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A New Golden Age for Computer Architecture

John Hennessy and David Patterson’s 
ISCA 2018 Turing Award Lecture

“We believe the deceleration of performance gains for 
standard microprocessors, the opportunities in 
high-level, domain-specific languages and security, 
the freeing of architects from the chains of 
proprietary ISAs, and (ironically) the ending of 
Dennard scaling and Moore’s law will lead to another 
Golden Age for architecture”



A New Golden Age for Optimizing Compilers

“We live in a heterogeneous world of domain-specific languages and 
accelerators, freeing programming language designers and computer architects 
from the chains of general-purpose, one-size-fits-all designs.”

→ A call to action for compiler construction



A New Golden Age for Optimizing Compilers

“We live in a heterogeneous world of domain-specific languages and 
accelerators, freeing programming language and computer architects from the 
chains of general-purpose, one-size-fits-all designs.”

What to expect in the next 25mn

1. Some ML and HPC context
opportunities for compilers

2. Compiler construction directions and research
industry perspective, academic perspective



Models are growing
and getting more complex

● Model Size: larger models require 
more multiply accumulate 
operations. 

● Model Complexity: as model 
complexity increases it becomes 
harder to fully utilize hardware.

● Much faster than Moore’s law

Source: OpenAI - AI & Compute

A Detour Through ML Applications

https://blog.openai.com/ai-and-compute/


ML is: data + algorithms + compute

~ Data drives the continuous 
improvement cycle for ML models

~ Researchers provide new 
algorithmic innovations unlocking 
new techniques and models

~ Compute allows it all to scale as 
datasets get larger and algorithms 
need to scale on that accordingly

Data
Algorithms

Compute

A Detour Through ML Applications



Cloud and HPC Accelerators

Volta, Vega, Ampere

Nervana

Habana

Cerebras Systems

Graphcore

SambaNova

… and many more Cerebras Systems Graphcore

Habana Intel

Chip Manufacturers:



~5.5B Mobile Phones 250B+ Microcontrollers Edge TPUs

Embedded, Mobile, Edge Hardware



With increasingly 
complexity

~ Heterogeneous hardware 
is now the norm

~ Scaling from phones 
down to microcontrollers

~ Memory, energy, 
performance and latency 
constraints become 
paramount

CPU GPU

DSP NPU

Heterogeneous Compute

Microcontrollers

Edge TPUs



More Hardware... More Complexity...

~ Many different hardware 
accelerators focused on ML

~ Many different types and 
architectures: 4-bit, 16-bit, 32-bit...

~ Inability to quickly scale up and 
down hardware consistently and 
varying levels of abstractions

Cerebras Systems Graphcore

TPU’s



HW is not just to blame here

ML Software Explosion too...

~ Many frameworks

~ Many different graph 
implementations

~ Each framework is trying 
to gain a usability and 
performance edge over 
each other 

CNTK



None of this is scaling



~ Systems don't interoperate

~ Cannot handle all these operators and 
types consistently on all hardware

~ Poor developer usability and 
debuggability across hardware

~ No generalizable standard for ensuring 
software and hardware scales together

Because



Any relief from programming 
languages?

Investment in a new software 
infrastructure?





Rationalizing the TensorFlow ecosystem
from cloud to on-device AI
graph representations
execution environments
compilers

And now much more and growing
support domain-specific frameworks
beyond TensorFlow and ML
contributed to LLVM foundation
https://mlir.llvm.org

MLIR — Multi-Level Intermediate Representation

blog post - 9/9/2019

https://mlir.llvm.org
https://www.blog.google/technology/ai/mlir-accelerating-ai-open-source-infrastructure/


95% of the world’s data-center accelerator hardware

Deployment on 4 billion mobile phones and countless IoT devices

Governance moved to LLVM
https://mlir.llvm.org

Industry Adoption

https://mlir.llvm.org


~ An extensible representation for types and operations, control & compute

~ Driven by ML training and inference, scaling from mobile to cloud

~ Best in class programming models and compiler technology

~ Independent of the execution environment

~ Modular, reusable components

~ Enabling the progressive lowering of higher level abstractions

What is MLIR?



MLIR — Compute Graphs to Instructions in One Slide

TensorFlow
%x = "tf.Conv2d"(%input, %filter)
          {strides: [1,1,2,1], padding: "SAME", dilations: [2,1,1,1]}
    : (tensor<*xf32>, tensor<*xf32>) -> tensor<*xf32>

XLA HLO

LLVM IR

%m = “xla.AllToAll"(%z)
          {split_dimension: 1, concat_dimension: 0, split_count: 2}
    : (memref<300x200x32xf32>) -> memref<600x100x32xf32>

%f = llvm.add %a, %b 
    : !llvm.float

And many more abstractions and levels: TF-Lite, structured linear algebra operations, 
nested control flow, affine loops, quantized operations, GPU, etc.
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Mix and Match in one IR



Control flow and dynamic features of TensorFlow 1, TensorFlow 2
● Conversion from control to data flow
● Both lazy and eager evaluation modes

Concurrency
● Sequential execution in blocks
● Distribution
● Offloading
● Concurrency in tf.graph regions

Implicit futures to capture asynchronous task parallelism within SSA and CFG graph representations

● TFRT: https://blog.tensorflow.org/2020/04/tfrt-new-tensorflow-runtime.html

MLIR — Modeling TensorFlow Control & Concurrency

https://blog.tensorflow.org/2020/04/tfrt-new-tensorflow-runtime.html


MLIR — GPU Acceleration

MLIR Open Design Meeting
December 12, 2019

And many more dialects, projects



ML 
Frameworks

E.g. TensorFlow, 
JAX, PyTorch etc 

Graph
Import

Optimization & 
Conversion

Runtime
(IREE, TFlite, 

TFRT …)

GPU

CPU

...

TPU

Op definition

Type definition

...

Rewrite Generators

Lowering passes

Canonicalization

Legalization

...

Code 
Generation

Target optimizations

Operator fusion

Kernel selection

Instruction selection

...

MLIR

FPGA

MLIR Compiler Infrastructure
A common graph representation and legalization framework,

a common set of optimization and conversion passes and code generation pipeline
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It’s Unopinionated
Leverage different components of the system as needed



ML 
Frameworks

E.g. TensorFlow, 
JAX, PyTorch etc 

Graph
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FPGA

One Size Fits None
MLIR can also be modularized as a graph rewriting tool, e.g. for TensorFlow Lite



Zooming in:
MLIR-based research



Compile to Learn
High-performance ML layers, generated automatically
Compilation algorithms tailored for tensor computing

Learn to Compile
Automatic synthesis of code optimization

Heuristics, performance auto-tuning



Context: “superoptimizing” loop nests in numerical kernels,
finding best implementation/optimization decisions

● Optimizations do not compose well, they may enable or disable others
● Cannot infer precise performance estimates from intermediate compilation steps

Optimizing compilation never seems to catch up
... new hardware, optimization tricks

… witnessing a widening gap in performance portability

Problem Statement: Synthesizing Fast ML Operations



Synthesizing Fast ML Operations



hardware-accelerated implementation

algorithmic specification

Synthesizing Fast ML Operations



✓ ×

many
possible

implementations

algorithmic specification

Synthesizing Fast ML Operations



algorithmic specification

× ×

× ×

Synthesizing Fast ML Operations
algorithmic specification

way too many
possible

implementations



algorithmic specification

× ×

× ×

Synthesizing Fast ML Operations
→ Compiler + Constraint Solver + Reinforcement Learning

✓



Partially instantiated vector of decisions

● Every choice is a decision variable
● Taking a decision = restricting a domain
● Fully specified implementation ⇔ All decision variables assigned a single value

Candidates



Kernel Decisions

Enforce decision coherence with constraints

order(x, d0) = Inner && order(x, y) = Before => order(y, d0) ∈ { Inner, After }

%x = load X[0]

%y = add %x, 42

for %d0 = 0 to 16 {

    %z = add %y, %d0

}

%y = add %x, 42

for %d0 = 0 to 16 {

    %x = load X[0]

    %z = add %y, %d0

}

for %d0 = 0 to 16 {

    %x = load X[0]

    %y = add %x, 42

    %z = add %y, %d0

}

order(%x, %d0) ∈ { Before, Inner }

order(%x, %y)  ∈ { Before }

order(%y, %d0) ∈ { Before, Inner }

...

order(%x, %d0) ∈ { Before, Inner } <- decision

order(%x, %y)  ∈ { Before }

order(%y, %d0) ∈ { Before, Inner }

...

order(%x, %d0) ∈ { Before, Inner } <- decision

order(%x, %y)  ∈ { Before }

order(%y, %d0) ∈ { Before, Inner } <- constraint propagation

...

Candidates and Constraints



Well behaved set of actions

● Commute

● All decisions known upfront

● Constraint propagation almost never backtracks in practice

Flat, fixed sized, ideal environment for Reinforcement Learning (RL)

● Extract features from the decision vector

● Global heuristics, aware of all potential optimizations

● Infer all possible decisions (actions) and/or estimate performance

Enabling Better Search Algorithms



Find an assignment for functions

 kind: Dimension -> { Loop, Unrolled, Vector, Thread, Block }

 order: Statements x Statements -> { Before, After, Inner, Outer, Fused }

Satisfying a system of constraints

 ∀ a, b ∊ Dimension. order(a, b) = Fused => kind(a) = kind(b)

 (a.k.a. typed fusion)

Constraint Satisfaction Problem (CSP)



Generic loop nest and array optimizations + GPU-specific optimizations

● Strip mining factor
● Loop interchange
● Loop fusion
● Software pipelining
● Statement Scheduling
● Rematerialization

● Memory layout
● Copy to local memories
● Double buffering
● Vectorization

Synthesizing GPU Optimizations



Performance model of a lower bound on the execution time

∀x∊S. Model(S) ≤ Time(x)

● Enable Branch & Bound, with feedback from real executions
○ Reduce the search space by several orders of magnitude
○ Prune early in the search tree (75% in the first two levels for matmul on GPU)

● Possible because it is aware of choices that are yet to come
● GPU model of block- and thread-level micro-architecture

○ Roofline model of the interaction between bottlenecks

Match our outperform state of the art code generators
Halide, TVM, Lift, Triton, etc.

Branch and Bound + Monte Carlo Tree Search (MCTS)



● High variance of the search time (stuck in suboptimal areas)

● Lots of dead-ends
○ Mostly due to performance model
○ ~20x more dead-ends than implementations

● Non-stationary distribution due to cuts
○ Somewhat intrinsic to MCTS
○ Branch & bound strategy makes it trickier

Search Issues (Ongoing Research)





Call to Action: Extensibility & Hackability & Research

Heterogeneity ⇒ need for a super-extensible = super-reusable system
foster next-generation accelerator adoption and research

● domain-specific languages as first-class constructs
● domain-specific hardware interface as first-class operations
● lowering and mixing language and hardware abstractions
● type systems: novel numerics, sparse tensors, logic properties, dependent types
● concurrency, parallel constructs, memory modeling
● model and carry debug information, traceability, security properties
● model structured search spaces of program transformations



We are hiring!
mlir-hiring@google.com

Compiler Construction
Design for Diversity


