
Compiler Construction
for Hardware Acceleration:

Challenges and Opportunities

ISC 2020 ML Hardware Workshop — June 25, 2020
Albert Cohen, Google, Paris

A New Golden Age for Computer Architecture

John Hennessy and David Patterson’s
ISCA 2018 Turing Award Lecture

“We believe the deceleration of performance gains for
standard microprocessors, the opportunities in
high-level, domain-specific languages and security,
the freeing of architects from the chains of
proprietary ISAs, and (ironically) the ending of
Dennard scaling and Moore’s law will lead to another
Golden Age for architecture”

A New Golden Age for Optimizing Compilers

“We live in a heterogeneous world of domain-specific languages and
accelerators, freeing programming language designers and computer architects
from the chains of general-purpose, one-size-fits-all designs.”

→ A call to action for compiler construction

A New Golden Age for Optimizing Compilers

“We live in a heterogeneous world of domain-specific languages and
accelerators, freeing programming language and computer architects from the
chains of general-purpose, one-size-fits-all designs.”

What to expect in the next 25mn

1. Some ML and HPC context
opportunities for compilers

2. Compiler construction directions and research
industry perspective, academic perspective

Models are growing
and getting more complex

● Model Size: larger models require
more multiply accumulate
operations.

● Model Complexity: as model
complexity increases it becomes
harder to fully utilize hardware.

● Much faster than Moore’s law

Source: OpenAI - AI & Compute

A Detour Through ML Applications

https://blog.openai.com/ai-and-compute/

ML is: data + algorithms + compute

~ Data drives the continuous
improvement cycle for ML models

~ Researchers provide new
algorithmic innovations unlocking
new techniques and models

~ Compute allows it all to scale as
datasets get larger and algorithms
need to scale on that accordingly

Data
Algorithms

Compute

A Detour Through ML Applications

Cloud and HPC Accelerators

Volta, Vega, Ampere

Nervana

Habana

Cerebras Systems

Graphcore

SambaNova

… and many more Cerebras Systems Graphcore

Habana Intel

Chip Manufacturers:

~5.5B Mobile Phones 250B+ Microcontrollers Edge TPUs

Embedded, Mobile, Edge Hardware

With increasingly
complexity

~ Heterogeneous hardware
is now the norm

~ Scaling from phones
down to microcontrollers

~ Memory, energy,
performance and latency
constraints become
paramount

CPU GPU

DSP NPU

Heterogeneous Compute

Microcontrollers

Edge TPUs

More Hardware... More Complexity...

~ Many different hardware
accelerators focused on ML

~ Many different types and
architectures: 4-bit, 16-bit, 32-bit...

~ Inability to quickly scale up and
down hardware consistently and
varying levels of abstractions

Cerebras Systems Graphcore

TPU’s

HW is not just to blame here

ML Software Explosion too...

~ Many frameworks

~ Many different graph
implementations

~ Each framework is trying
to gain a usability and
performance edge over
each other

CNTK

None of this is scaling

~ Systems don't interoperate

~ Cannot handle all these operators and
types consistently on all hardware

~ Poor developer usability and
debuggability across hardware

~ No generalizable standard for ensuring
software and hardware scales together

Because

Any relief from programming
languages?

Investment in a new software
infrastructure?

Rationalizing the TensorFlow ecosystem
from cloud to on-device AI
graph representations
execution environments
compilers

And now much more and growing
support domain-specific frameworks
beyond TensorFlow and ML
contributed to LLVM foundation
https://mlir.llvm.org

MLIR — Multi-Level Intermediate Representation

blog post - 9/9/2019

https://mlir.llvm.org
https://www.blog.google/technology/ai/mlir-accelerating-ai-open-source-infrastructure/

95% of the world’s data-center accelerator hardware

Deployment on 4 billion mobile phones and countless IoT devices

Governance moved to LLVM
https://mlir.llvm.org

Industry Adoption

https://mlir.llvm.org

~ An extensible representation for types and operations, control & compute

~ Driven by ML training and inference, scaling from mobile to cloud

~ Best in class programming models and compiler technology

~ Independent of the execution environment

~ Modular, reusable components

~ Enabling the progressive lowering of higher level abstractions

What is MLIR?

MLIR — Compute Graphs to Instructions in One Slide

TensorFlow
%x = "tf.Conv2d"(%input, %filter)
 {strides: [1,1,2,1], padding: "SAME", dilations: [2,1,1,1]}
 : (tensor<*xf32>, tensor<*xf32>) -> tensor<*xf32>

XLA HLO

LLVM IR

%m = “xla.AllToAll"(%z)
 {split_dimension: 1, concat_dimension: 0, split_count: 2}
 : (memref<300x200x32xf32>) -> memref<600x100x32xf32>

%f = llvm.add %a, %b
 : !llvm.float

And many more abstractions and levels: TF-Lite, structured linear algebra operations,
nested control flow, affine loops, quantized operations, GPU, etc.

Lo
w

er
in

g

Mix and Match in one IR

Control flow and dynamic features of TensorFlow 1, TensorFlow 2
● Conversion from control to data flow
● Both lazy and eager evaluation modes

Concurrency
● Sequential execution in blocks
● Distribution
● Offloading
● Concurrency in tf.graph regions

Implicit futures to capture asynchronous task parallelism within SSA and CFG graph representations

● TFRT: https://blog.tensorflow.org/2020/04/tfrt-new-tensorflow-runtime.html

MLIR — Modeling TensorFlow Control & Concurrency

https://blog.tensorflow.org/2020/04/tfrt-new-tensorflow-runtime.html

MLIR — GPU Acceleration

MLIR Open Design Meeting
December 12, 2019

And many more dialects, projects

ML
Frameworks

E.g. TensorFlow,
JAX, PyTorch etc

Graph
Import

Optimization &
Conversion

Runtime
(IREE, TFlite,

TFRT …)

GPU

CPU

...

TPU

Op definition

Type definition

...

Rewrite Generators

Lowering passes

Canonicalization

Legalization

...

Code
Generation

Target optimizations

Operator fusion

Kernel selection

Instruction selection

...

MLIR

FPGA

MLIR Compiler Infrastructure
A common graph representation and legalization framework,

a common set of optimization and conversion passes and code generation pipeline

ML
Frameworks

E.g. TensorFlow,
JAX, PyTorch etc

Graph
Import

Optimization &
Conversion

Runtime
(IREE, TFlite,

TFRT …)

GPU

CPU

...

TPU

Op definition

Type definition

...

Rewrite Generators

Lowering passes

Canonicalization

Legalization

...

MLIR

FPGA

It’s Unopinionated
Leverage different components of the system as needed

ML
Frameworks

E.g. TensorFlow,
JAX, PyTorch etc

Graph
Import

Optimization &
Conversion

Runtime
(IREE, TFlite,

TFRT …)

GPU

CPU

...

TPU

Op definition

Type definition

...

Rewrite Generators

Lowering passes

Canonicalization

Legalization

...

MLIR

FPGA

One Size Fits None
MLIR can also be modularized as a graph rewriting tool, e.g. for TensorFlow Lite

Zooming in:
MLIR-based research

Compile to Learn
High-performance ML layers, generated automatically
Compilation algorithms tailored for tensor computing

Learn to Compile
Automatic synthesis of code optimization

Heuristics, performance auto-tuning

Context: “superoptimizing” loop nests in numerical kernels,
finding best implementation/optimization decisions

● Optimizations do not compose well, they may enable or disable others
● Cannot infer precise performance estimates from intermediate compilation steps

Optimizing compilation never seems to catch up
... new hardware, optimization tricks

… witnessing a widening gap in performance portability

Problem Statement: Synthesizing Fast ML Operations

Synthesizing Fast ML Operations

hardware-accelerated implementation

algorithmic specification

Synthesizing Fast ML Operations

✓ ×

many
possible

implementations

algorithmic specification

Synthesizing Fast ML Operations

algorithmic specification

× ×

× ×

Synthesizing Fast ML Operations
algorithmic specification

way too many
possible

implementations

algorithmic specification

× ×

× ×

Synthesizing Fast ML Operations
→ Compiler + Constraint Solver + Reinforcement Learning

✓

Partially instantiated vector of decisions

● Every choice is a decision variable
● Taking a decision = restricting a domain
● Fully specified implementation ⇔ All decision variables assigned a single value

Candidates

Kernel Decisions

Enforce decision coherence with constraints

order(x, d0) = Inner && order(x, y) = Before => order(y, d0) ∈ { Inner, After }

%x = load X[0]

%y = add %x, 42

for %d0 = 0 to 16 {

 %z = add %y, %d0

}

%y = add %x, 42

for %d0 = 0 to 16 {

 %x = load X[0]

 %z = add %y, %d0

}

for %d0 = 0 to 16 {

 %x = load X[0]

 %y = add %x, 42

 %z = add %y, %d0

}

order(%x, %d0) ∈ { Before, Inner }

order(%x, %y) ∈ { Before }

order(%y, %d0) ∈ { Before, Inner }

...

order(%x, %d0) ∈ { Before, Inner } <- decision

order(%x, %y) ∈ { Before }

order(%y, %d0) ∈ { Before, Inner }

...

order(%x, %d0) ∈ { Before, Inner } <- decision

order(%x, %y) ∈ { Before }

order(%y, %d0) ∈ { Before, Inner } <- constraint propagation

...

Candidates and Constraints

Well behaved set of actions

● Commute

● All decisions known upfront

● Constraint propagation almost never backtracks in practice

Flat, fixed sized, ideal environment for Reinforcement Learning (RL)

● Extract features from the decision vector

● Global heuristics, aware of all potential optimizations

● Infer all possible decisions (actions) and/or estimate performance

Enabling Better Search Algorithms

Find an assignment for functions

 kind: Dimension -> { Loop, Unrolled, Vector, Thread, Block }

 order: Statements x Statements -> { Before, After, Inner, Outer, Fused }

Satisfying a system of constraints

 ∀ a, b ∊ Dimension. order(a, b) = Fused => kind(a) = kind(b)

 (a.k.a. typed fusion)

Constraint Satisfaction Problem (CSP)

Generic loop nest and array optimizations + GPU-specific optimizations

● Strip mining factor
● Loop interchange
● Loop fusion
● Software pipelining
● Statement Scheduling
● Rematerialization

● Memory layout
● Copy to local memories
● Double buffering
● Vectorization

Synthesizing GPU Optimizations

Performance model of a lower bound on the execution time

∀x∊S. Model(S) ≤ Time(x)

● Enable Branch & Bound, with feedback from real executions
○ Reduce the search space by several orders of magnitude
○ Prune early in the search tree (75% in the first two levels for matmul on GPU)

● Possible because it is aware of choices that are yet to come
● GPU model of block- and thread-level micro-architecture

○ Roofline model of the interaction between bottlenecks

Match our outperform state of the art code generators
Halide, TVM, Lift, Triton, etc.

Branch and Bound + Monte Carlo Tree Search (MCTS)

● High variance of the search time (stuck in suboptimal areas)

● Lots of dead-ends
○ Mostly due to performance model
○ ~20x more dead-ends than implementations

● Non-stationary distribution due to cuts
○ Somewhat intrinsic to MCTS
○ Branch & bound strategy makes it trickier

Search Issues (Ongoing Research)

Call to Action: Extensibility & Hackability & Research

Heterogeneity ⇒ need for a super-extensible = super-reusable system
foster next-generation accelerator adoption and research

● domain-specific languages as first-class constructs
● domain-specific hardware interface as first-class operations
● lowering and mixing language and hardware abstractions
● type systems: novel numerics, sparse tensors, logic properties, dependent types
● concurrency, parallel constructs, memory modeling
● model and carry debug information, traceability, security properties
● model structured search spaces of program transformations

We are hiring!
mlir-hiring@google.com

Compiler Construction
Design for Diversity

