

Specialization in Hardware Architectures for Deep Learning

Michaela Blott Distinguished Engineer June 2021

Background

> Xilinx

- Fabless semiconductor company, founded in Silicon Valley in 1984
- Invented the FPGA

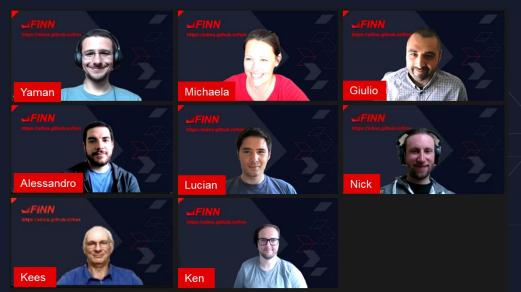
> Xilinx Research Dublin

- >> ~10 researchers plus university program
- >> Plus 4-6interns typically

Focus: FPGAs in Machine Learning

Building systems, architectural exploration, algorithmic optimizations, benchmarking

In collaboration with partners, customers and universities



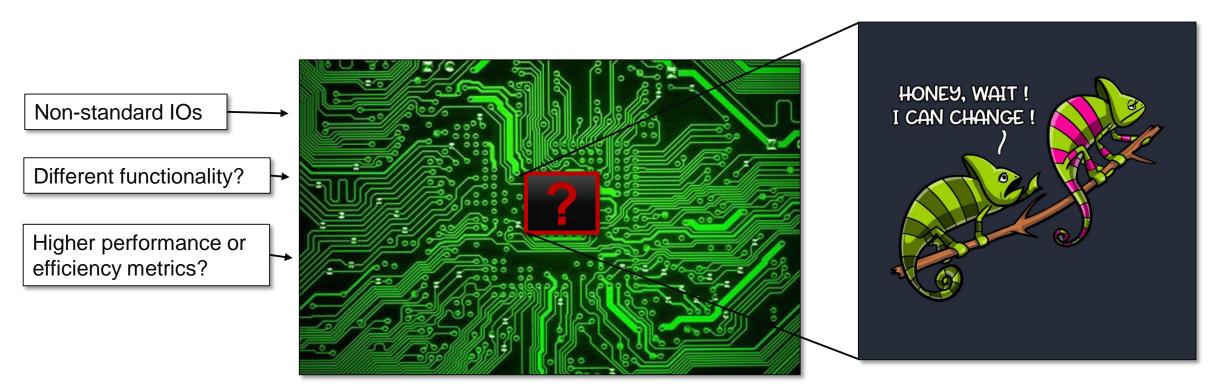
Lucian Petrica, Giulio Gambardella, Alessandro Pappalardo, Ken O'Brien, Nick Fraser, Yaman Umuroglu , Michaela Blott + Kees Vissers

What are FPGAs?

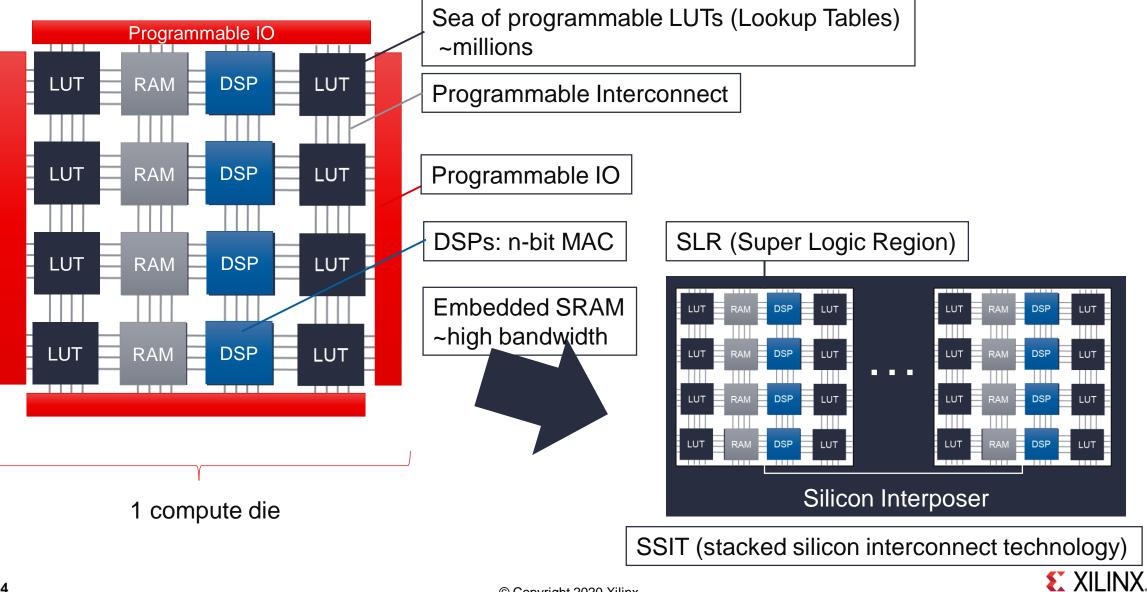
Customizable, Programmable Hardware Architectures

• The chameleon amongst the semiconductors...

- Customizes IO interfaces, compute architectures, memory subsystems to meet the application
- Use case: Nothing else works, and you want to avoid ASIC implementation; or ASIC emulation

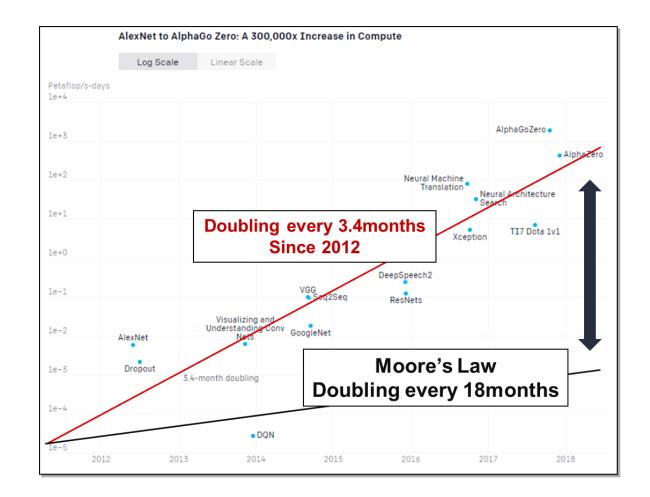


What are FPGAs?

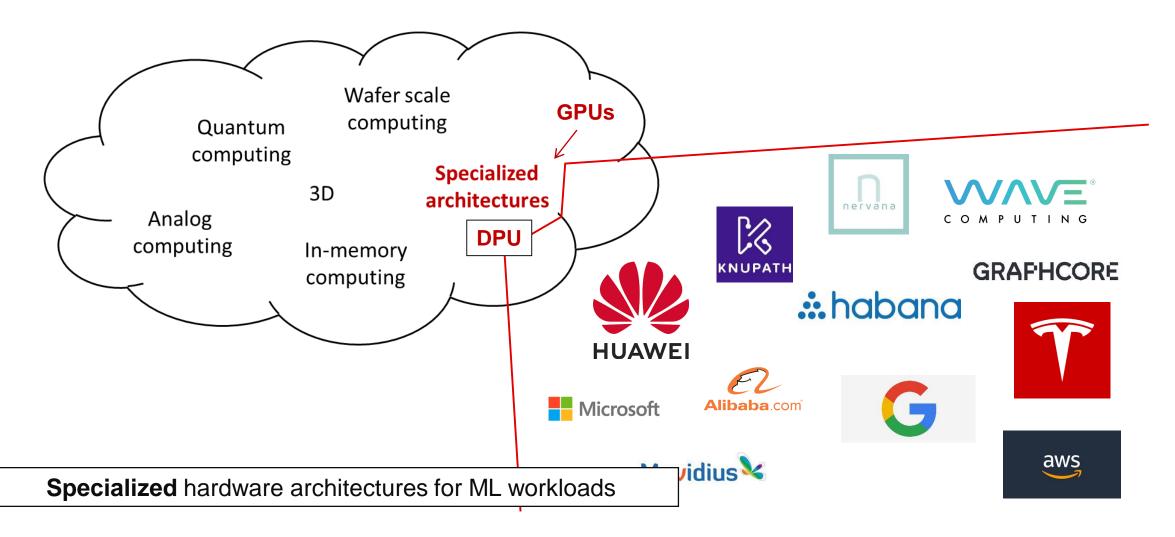


Why do we need specialization in hardware architectures for Deep Learning?

- DNNs bring huge potential and are penetrating many applications
- Associated compute and memory requirements are huge
- Compute requirements are outpacing Moore's Law
- Hitting the physical limits of siliconbased computing
- Architectural innovation needed



Explosion of Innovative Approaches



Deep Learning Processor Architectures

Specialization, Performance & Flexibility

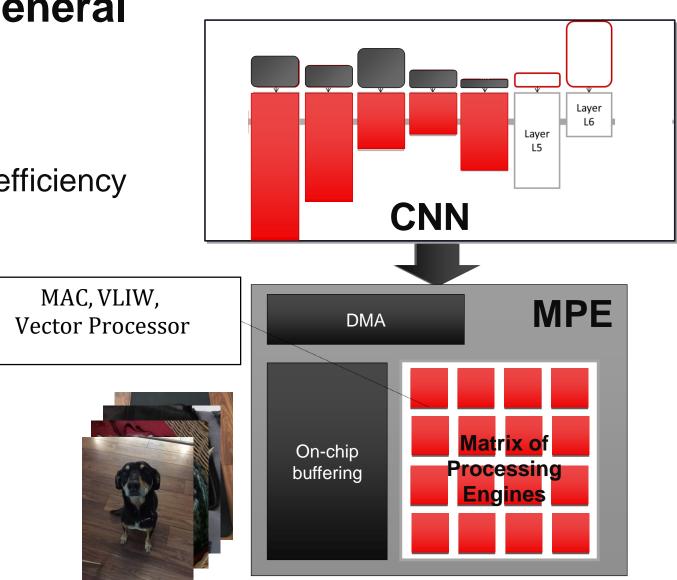
generic slower		Specialization Performance Efficiency	co-designed specialized faster more efficient
	Customize for DNN in general	Customized for topologies	
	Matrix of Processing Engines (MPE)	Spatial Processors (SP)	

, .

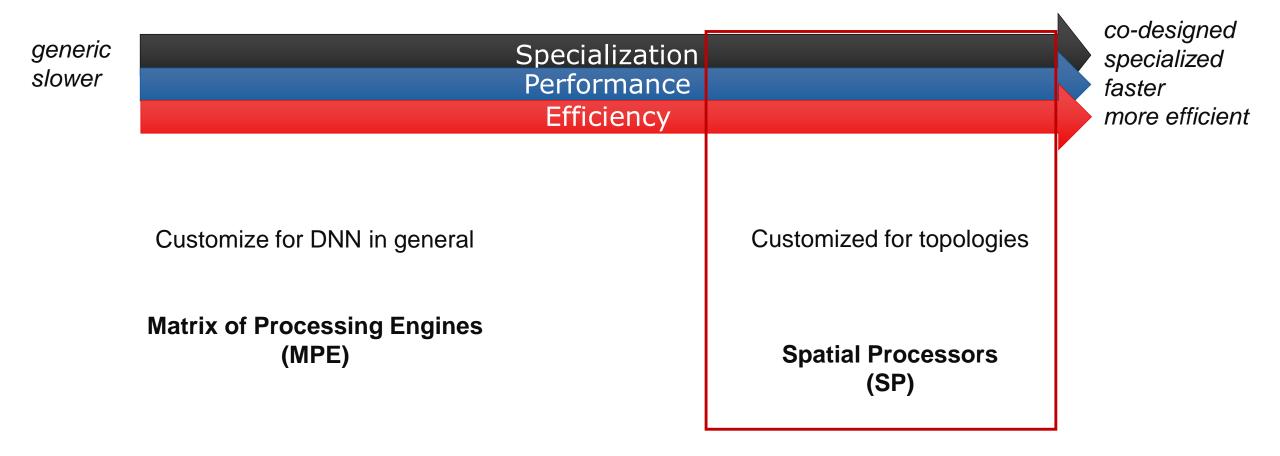
,

Matrix of Processing Engines Customizing for DNN in General

- Popular layer-by-layer compute
- Batching to achieve high compute efficiency
- Customized for ML in general
- Specialized processing engines
 - Operators
 - ALU types
 - tensor-, matrix- or vector-based



Specialization, Performance & Flexibility



Spatial Processors (SP): Customizing for Specific Topologies

- Hardware instantiates the topology as a dataflow architecture
 - Customize everything to the **specifics of the given DNN**, any operation, any connectivity
- Benefits:
 - Improved efficiency
 - Low fixed latency
- Scale performance & resources to meet the application requirements
 - If resources allow, we can completely unfold to create a circuit that inferences at clock speed and thereby meet these new throughput requirements

SPs can scale performance, reduce latency and provide improved efficiency

allocated resource ~

compute requirement

per layer

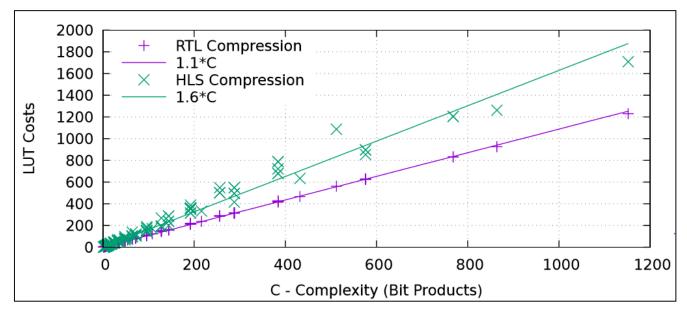
DNN

Customizing Arithmetic

Customizing Arithmetic to Minimum Precision Required

Shrinks hardware cost & scales performance

- Instantiate n-times more compute within the same fabric, thereby scale performance n-times
- 8b/8b -> 1b/1b, RTL => 70x



C= size of accumulator * size of weight * size of activation

Customizing Arithmetic to Minimum Precision Required

Potential to reduce memory footprint and avoid memory bottleneck

- DNN inference is typically memory bound
- DNN model can stay on-chip

Inherently saves power

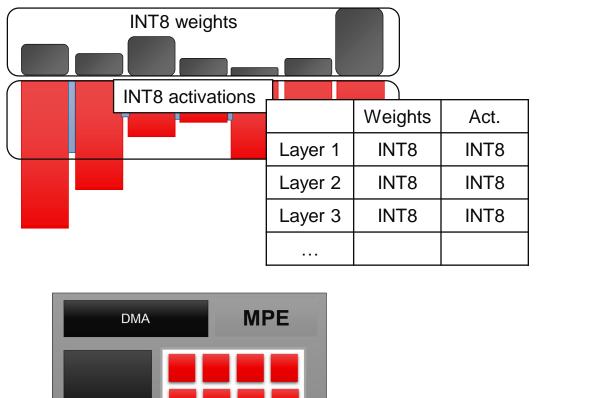
		Re	elative	Energ	y Cost	
Operation:	Energy (pJ)					
8b Add	0.03]				
16b Add	0.05					
32b Add	0.1					
16b FP Add	0.4					
32b FP Add	0.9					
8b Mult	0.2					
32b Mult	3.1					
16b FP Mult	1.1					
32b FP Mult	3.7					
32b SRAM Read (8KB)	5					
32b DRAM Read	640					
		1 1	0	100	1000	10000

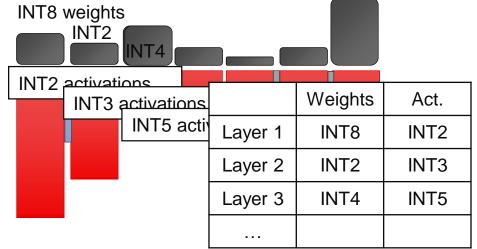
[Adapted from Horowitz. Computing's Energy Problem (and what we can do about it), ISSCC'14]

Customized arithmetic brings performance, resource, memory and energy benefits Requires co-design (retraining of CNNs)

Precision	Modelsize Mbyte (ResNet50)
1b	3.2
8b	25.5
32b	102.5

Granularity of Customizing Arithmetic



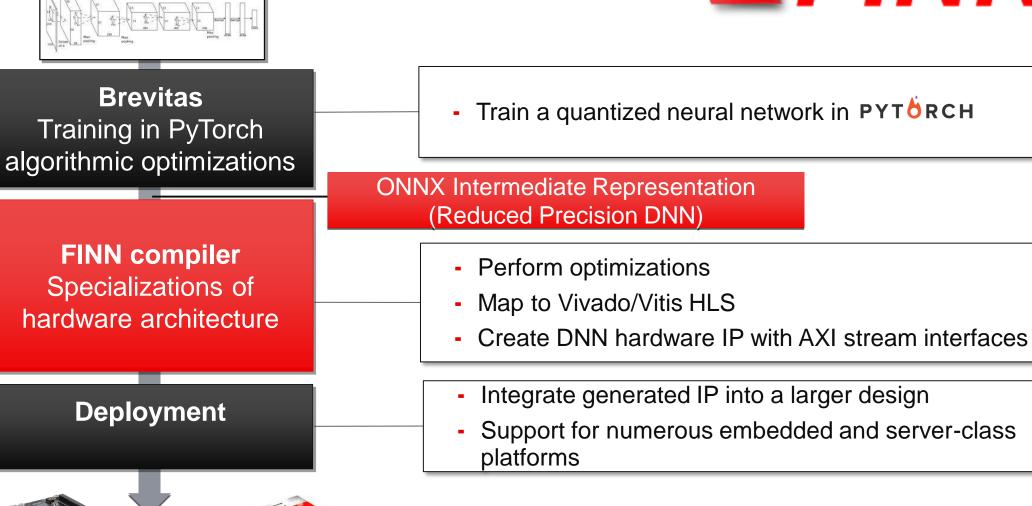


Challenge

How can we enable a broader spectrum of end-users to be able to specialize hardware architectures and co-design solutions?

- Providing tools and platforms for exploration of CNN compute architectures
- End-to-end flow
 - ML engineers can create specialized hardware architectures on an FPGA
 - with spatial architectures and custom precision
- Open source https://xilinx.github.io/finn
 - Transparency and flexibility for the fast changing landscape of algorithms
 - if not supported, you can add your own

From CNN to FPGA Deployment

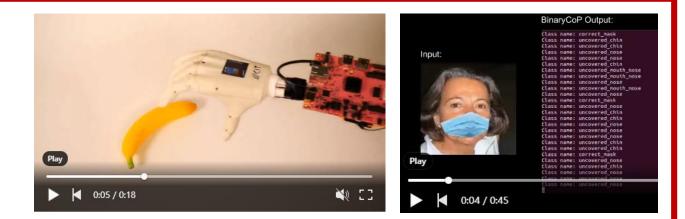


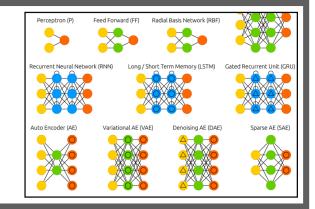
Many Use Cases, Platforms, Datasets and Topologies

- Many embedded and server-class platforms
- Multi-FPGA and single-node

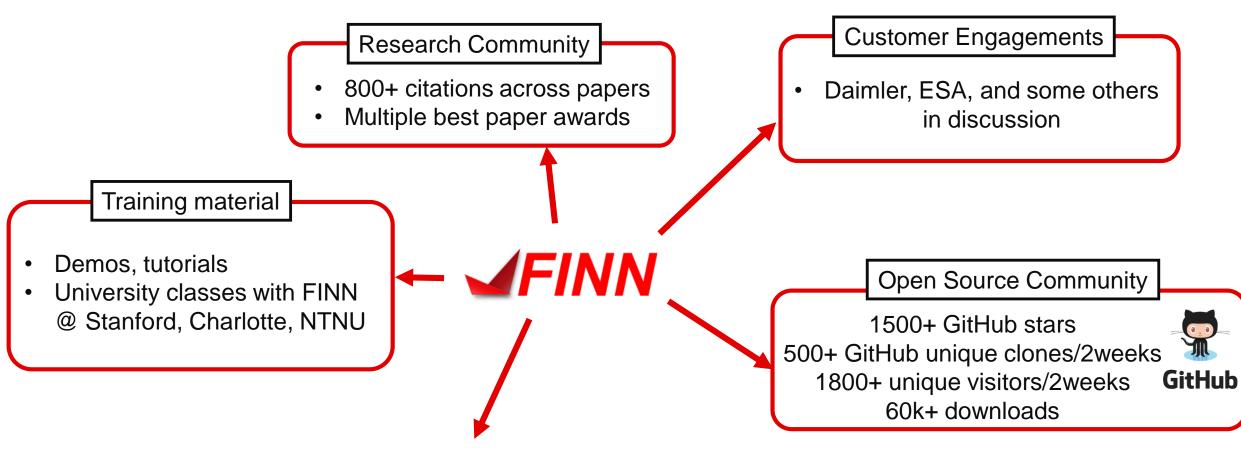
Many more applications

- Radio modulation classification
- Speech recognition
- Facemask detection
- Object recognition with prosthetic hands
- Optical character recognition
- Playing card for solitaire playing robot arm
- Many topologies
 - MLPs, CNV, Yolo variants
 - MobileNetv1& ResNet50
 - LSTM
 - QuartzNet in progress





Status & Results

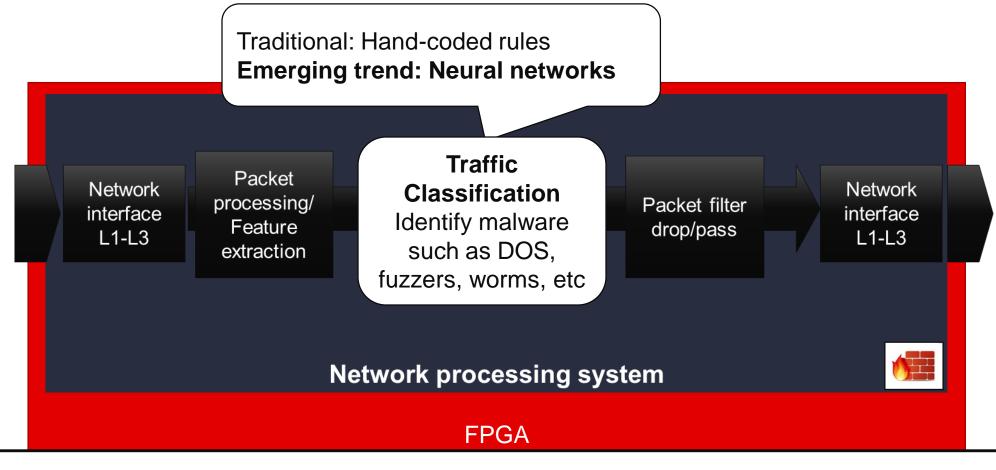


Looking to grow community and build-up industrial applications If you like to collaborate- we'd love to hear from you ©

Results

XILINX.

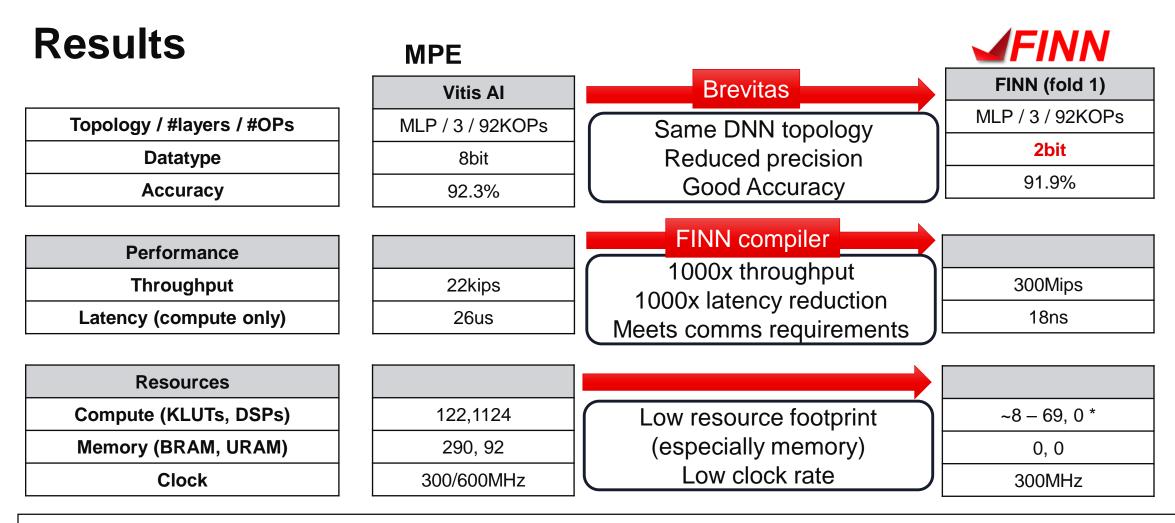
Deep Network Intrusion Detection System



Goal: Implement **NN-based traffic classifier** delivering 100G **line-rate** throughput = 150 Mips Latency sensitive (buffer 10s of MB/msec)

[1] Moustara, nour, and Jin Stay. <u>ONSW-INBTS. a comprehensive data set for network initiasion detection systems (ONSW-INBTS network data set).</u> Initiary communications and Information Systems Conference (MilCIS), 2015. IEEE, 2015.

[2] Murovič, Tadej, and Andrej Trost. "Massively parallel combinational binary neural networks for edge processing." Elektrotehniski Vestnik 86.1/2 (2019): 47-53.



- >1000x performance improvement over Vitis AI, less resources,
- 100Gbps line rate (150Mips)
- Exploits: dataflow processing, reduced precision, fine-grained sparsity

Summary

 Spectrum of innovative architectures emerge to address upcoming compute and memory requirements in DNNs

Specialization of hardware architecture are critical to scaling architectures

- In particular for extreme throughput applications as we see for example in communications

We looked at the NIDS example which showed the tremendous benefits we get from quantization and spatial implementations

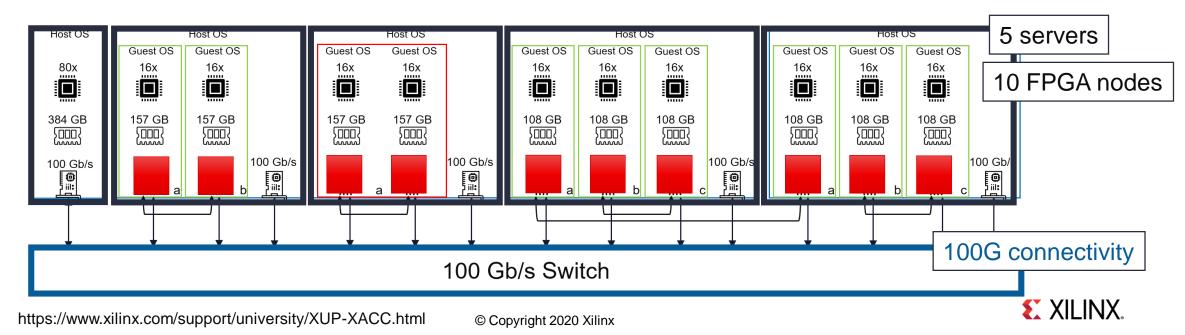
Infrastructure for Experimentation & Collaboration

- Xilinx academic compute clusters (XACC)
 - 4 centres world-wide
 - Free to use

26

- Enabling research community
- Explore innovative compute architectures
- Flexibility, networked FPGAs

Many examples emerging: <u>https://xilinx.github.io/xacc/</u>



XILINX.

Thank You

