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SambaNova dataflow execution

Accelerated Computing with a Reconfigurable Dataflow Architecture, White Paper, 2021
https://sambanova.ai/wp-content/uploads/2021/06/SambaNova_RDA_Whitepaper_English.pdf
Argonne &

2
anomal sasouaToRy

o, U8 terastennt o | Agonne Nasonsl Laborsiony B &
7 ENERGY UZ Departren: of Eneagy ooy
&/ manages by UCNCgo Argonse, LLC



A MODULAR DEEP LEARNING
PIPELINE FOR GALAXY-SCALE

Detection .vES ‘ l
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STRONG GRAVITATIONAL LENS J
DETECTION AND MODELING &P

https://arxiv.org/abs/1911.03867
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GALAXY-GALAXY STRONG LENSING

: Distance: 7.5 billion light years
What the telescope sees '

1.6 billion light years

Quasar

. | ‘

Distant galaxy

- Gravitational lens bends the -
light rays

» Gravitational lensing: phenomenon by which light rays are deflected as they traverse through curved
space caused by the presence of massive astrophysical objects.
» Galaxy-galaxy strong lensing (GGSL) - background source and foreground lens are both galaxies
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DEEP LEARNING PIPELINE

Training

Detection .vi s—} {
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Denoising is an image restoration approach used to recover
a clean image from a noisy observation
» No prior assumption on the noise form is required
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De-noising Deblending ‘ L,
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DEEP LEARNING PIPELINE

Training

‘ Detection .y s—} { | , ; :
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De-noising Deblending L» / ' 14

Deblending refers to decoupling the lensed light and the
source galaxy from the observations.
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DEEP LEARNING PIPELINE

Training

Detection .vi s—} {
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Lens Detection/Finding refers to classifying the lensed and
non-lensed systems from the source separated images
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De-noising Deblending ‘ L,
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DEEP LEARNING PIPELINE Lens modeling is a regression module that takes the source

o separated lensed galaxies and predicts its characteristics:
Training [Einstein Radius, Axis Ratio and Position Angle].
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DEEP LEARNING PIPELINE

Training Ground
Ground truth Ground
truth separated truth lensed
Noiseless source systems

" he
Detection .y LsJ (
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De-noising Deblending L»
* The denoising and the deblending modules essentially preprocess the images in the pipeline
to enhance the lens searching and modeling tasks further down the pipeline.
» Each of the four modules are trained with corresponding simulated data as the training set
» Ex: Denoising model is trained to output noiseless images generated from simulation

with the corresponding noisy counterparts as input
Z)ENERGY Lmmiinim 9 Argonne &



DEEP LEARNING PIPELINE

Inference

Regression

Detection .vEs

NO
De-noising Deblending

 All the trained models weights are frozen
» Only the noisy blended image is fed to the pipeline
* All the subsequent steps — Denoising, Deblending, Lens Detection and Finding are done
sequentially
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DENOISING AND DEBLENDING PIPELINE ON SAMBANOVA
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Atomic nuclei and neutrino scattering

MACHINE LEARNING-BASED
INVERSION OF NUCLEAR

RESPONSES

https://journals.aps.org/prc/abstract/10.1103/PhysRevC.103.035502
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35— S. Bacca et al., PRL 111, 122502 (2013)
16, 3y — ——

Atomic nuclei and neutrino scattering
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Measured by

The response functions contain all electron-scattering
information on the structure and dynamics experiments
of the target

Rag(w,a) = ) (WolJL(a)[Cs)(¥s|Js(a)|¥o)d(w — B + Eo)
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LAPLACE TRANSFORM

Valuable information on the energy dependence of the response functions
can be inferred from their Laplace transforms

0.04

Rer(w,q) ——
7 =0.001 MeV~! ———~
7=0.01 MeV~! -----

The system is first heated up by the Rl ™= 0.05 MeV ! ]
transition operator.

Its cooling determines the Euclidean
response of the system
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Eap(1,q) = /dwe‘wTRQB(w,q),
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LAPLACE TRANSFORM

E.s(7,q) — Rap(w,q)
6.0 - 0.06 T r T
. Euclidean response —e— Response e

sof e, 0.05

40 == oM
-
v <

o 30 ‘., = 0
'o.. o
. 4

2wt e, = 0.02

.........
“““““ 00§.0
10 : 0m
0.0 0
0 0.01 0.02 0.03 0.4 0.056 0 50 100 150 200 250 300 350 400
T [MeV™Y) w [MeV)

R(Q) = K(Q,T) 'E(T).
 Theinverse is ill-posed
» Multiple response functions can have the same Euclidean response (within
errors)
« High noise in the Euclidean response results in unstable inversions
* Response: smooth, positive, and Laplace integration
R(9:0) = — e/ (ET®)
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MAPPING INVERSION PIPELINE ON SAMBANOVA

High Performance
Mixed Workloads

Training

Mixture of Neural Laplace
Gaussians Network Transform
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ACCELERATING GRAPH \\L\ Z S
CONVOLUTION BASED DEEP | Y
LEARNING FOR LARGE SCALE & q

HIGHWAY TRAFFIC R — -
FORECASTING et VL s e
https://journals.sagepub.com/doi/abs/10.1177/0361198120930010 ,\ ' "f’*ﬁ o | A
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TRAFFIC FORECASTING

Road network Historic traffic metrics Future traffic metrics
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Loop detectors 8.00AM ... 9.00AM 9.00AM ... 10.00AM
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TRAFFIC FORECASTING USING DCRNN
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HANDING LARGE GRAPHS USING DCRNN

. . Traffic of the
=Partition large graph into north of the
number of sub-graphs state is

different from
south
=Run DCRNN for each sub-
graph
=Combine the results and =y
forecast traffic R N

R https://geology.com/state-map/california.shtml
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https://geology.com/state-map/california.shtml
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GRAPH-PARTITIONING-BASED DCRNN
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Predicted Graph
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UNCERTAINTY ESTIMATION USING DEEP
ENSEMBLE LEARNING ON SAMBANOVA

» Estimate the model uncertainty from M models running using different random seed

Concurrent
Application Isolation
observed predicted M epistemic
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SUMMARY

= Al for science applications are complex

= Novel Al architectures can significantly accelerate Al for science
= Many different ways to configure and use

» Novel mapping strategies

= Not all Al for science applications require vision and language
= Support for custom models and experimentation

» Data movement will become a bottleneck

= Performance and power/energy tradeoffs

= Need for co-design and adaptation
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