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Moore’s Law

* transistors per mm?

* mm? per chip
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Cerebras Wafer Scale Engine
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Cerebras WSE-2 Largest GPU
2.6 Trillion Transistors 54.2 Billion Transistors
46,225 mm?2Silicon 826 mm2 Silicon
Cerebras Systems © 2021



Cerebras WSE Cerebras Advantage

Cerebras Systems Proprietary
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How did we do it?

Cross-wafer connectivity
Yield

Power and cooling

Thermal expansion
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Logical 2D mesh
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Yes, we can build wafer-scale systems

What did we put on the wafer?



All the memory

Fine grained parallelism
Shared nothing /?

Memory uniformly distributed across cores

Power-efficient, general purpose = GCore W Momary
core



On the Wafer:

. Huge compute
. Huge memory + comm bandwidth
. Great flops/watt

. 40 GB of SRAM memory



Node Data
Cerebras Systems: Placement Visualizer RECENT NEW SAVE delta t v

Generated: Sun Oct 15, 2017 22:14 PM [vijay@server1] {
"delta_t": 990,

vgg_final "depth": 0,

"in_bw": 1,

"layer": "GenConvForward",
50k "name": "nl.GenForward",
"ops": 990,

"out_bw": 1,

"outputs": {
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"gate": "outl",
"index": 0,
"prop": "fwd"
}
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"params": {
"file_name": "input",
"outl_fan_sz": 100,
"splits_c": 1,
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Semi-supervised
learning, scalable data
analysis and agent
based simulations on

population scale data

Treatment
Strategy

Unsupervised learning
coupled with multi-scale
molecular simulations

—

Supervised learning
augmented by stochastic
pathway modeling and

~ experimental design

Scope of CANDLE
Deep Learning

Drug
Response



Magnetic Burn

Laser light Fields products
lon beams Electrons lons
Radiation ;
Hydrodynamics .
Atomic Physics DNN output matches Cretin
With Cretin
Cretin Throughput
~18 million
samples/s

42 singles/zone
Requires 3.2 GB/s
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3 interpolated
scalars/zone

Lassen

Volta x1 Volta x2 Volta x3 Volta x4




CPU and GPU performance

Lid Driven Cavity, 370x370x370 mesh
No preconditioner

Pressure

Optimal Workload u-velocity
12k cells/core vvalocity
w-velocity
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Core count /1024
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On the CS-1:




BiCGStab: Building Blocks

(ijk+1)

(ij-1k)
e

reduce
broadcast

(ij+1X%)




Interprocessor
Communication

The wafer is a dataflow computer:

* Pre-routed virtual channels (“colors”)
* Single word packets

e Single clock latency

* Arrival triggers a task

* Data arrives in registers

e 24 colors

* Link level flow control
 Communication in the ISA




Allreduce in 1.3 us




Sparse matrix vector product via vector operations and dataflow
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Writing your own code: The SDK

e The SDK: Low-level programming for creating custom kernels
DSL with abstractions for the lower-level constructs of the WSE architecture
Libraries for common primitives, such as communication, BLAS, rand, etc
Debugger and performance profiling tools
Hardware simulator

Examples and documentation: language specification, sample code, and
programming guides

Beta ---



Results On NETL Xeon Cluster

Lid Driven Cavity, 600x600x600 mesh
No preconditioner

Pressure
0.86 PF/s et
(600x600x1536) R wvstocity
Over 30 % of peak

28 usecs / iteration
~200 X cluster
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National Energy Technology Lab

Speed Gain
a6 —e-600x600x600
—e-370x370x370
1600
400
100
1 4 16
Joule 2.0 Nodes/1024
200x Faster

@erebras

Energy Savings
—~e-600x600x600

-6-370x370x370
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4,600x Less Power

Cost Savin§s
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*Plots are from customer’s cost models.
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https://commons.wikimedia.org/wiki/File:Dampfturbine_Laeufer01.jpg
https://creativecommons.org/licenses/by-sa/3.0/deed.en

Technology

Opportunity

Examples

The Top

01010011 01100011
01101001 01100101
01101110 01100011
01100101 00000000

Software performance
engineering
Removing software bloat

Tailoring software to
hardware features
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Algorithms Hardware architecture

New problem domains Processor simplification
New machine models Domain specialization

— TheBottom

for example, semiconductor technology




