
Wafer-Scale Hardware for ML and Beyond

Rob Schreiber, Cerebras Systems, Inc.

2nd International Workshop On Machine Learning Hardware (IWMLH), July 2021

Moore’s Law

• transistors per mm2

• mm2 per chip

STOP

Cerebras Systems © 2021

Cerebras WSE-2
2.6 Trillion Transistors

46,225 mm2 Silicon

CS-1 Chassis

How did we do it?

Cross-wafer connectivity
Yield

Power and cooling

Thermal expansion

Cross-Die Wires

Developed with TSMC

Uniform bandwidth across wafer

Redundancy

Extra rows

Logical 2D mesh

Yes, we can build wafer-scale systems

What did we put on the wafer?

All the memory

Fine grained parallelism

Shared nothing

Power-efficient, general purpose
core

On the Wafer:

● Huge compute

● Huge memory + comm bandwidth

● Great flops/watt

● 40 GB of SRAM memory

Detailed Routing

@LLNL: Inertial confinement fusion model

Lassen

42 singles/zone
Requires 3.2 GB/s

3 interpolated
scalars/zone

~18 million
samples/s

DNN output matches Cretin

Laser light
Magnetic

Fields
Burn

products

Electrons IonsIon beams

Radiation Hydrodynamics
Atomic Physics

With Cretin

Atomic
structure

Te, I𝜐 𝛒

𝜅𝜐, 𝜼𝜐

CPU and GPU performance

On the CS-1: 3D mesh --> 2D machine

Fig. 4. Three dimensional problem mapping to two dimensional fabric
of processing elements

Listing 1. SpMV listing
/* CS-1 code that computes matrix-vector multiplication

* y = Ax with a seven-point stencil matrix A preconditioned

* to have ones on the main diagonal.

*/

/* Allocate storage for the various matrix and tensor elements.

* The z-dimensions and y-result are padded with zeros to avoid

* bounds checks in the code that follows.

*/

float16 xp[Z], xm[Z], yp[Z], ym[Z], zp[Z], zm[Z+1];

float16 x[Z+1], y[Z+2];

/* Allocate storage for FIFOs that store intermediate

* vector product components prior to reduction by summation.

* We used a FIFO depth of 20.

*/

float16 term[5][20];

/* Initialize DSRs with tensor descriptors for the access

* pattern. We use a consecutive access pattern with an

* outer dimension stride of zero to return the DSR to its

* initial position when the operation is complete.

*/

tensor xp_a = {.base=xp, .shape={1,Z }, .stride={0,1} };

tensor xm_a = {.base=xm, .shape={1,Z }, .stride={0,1} };

tensor yp_a = {.base=yp, .shape={1,Z }, .stride={0,1} };

tensor ym_a = {.base=ym, .shape={1,Z }, .stride={0,1} };

tensor zp_a = {.base=zp, .shape={1,Z }, .stride={0,1} };

tensor zm_a = {.base=zm, .shape={1,Z+1}, .stride={0,1} };

/* Initialize (more) DSRs with FIFO descriptors to store

* intermediate products. The FIFOs are configured to

* activate certain tasks automatically when data is

* pushed.

*/

fifo xp_fifo={.start=term[0], .end=term[1], .onpush=sumtask};

fifo xm_fifo={.start=term[1], .end=term[2], .onpush=sumtask};

fifo yp_fifo={.start=term[2], .end=term[3], .onpush=sumtask};

fifo ym_fifo={.start=term[3], .end=term[4], .onpush=sumtask};

fifo zp_fifo={.start=term[4], .end=term[5], .onpush=sumtask};

/* Initialize (yet more) DSRs with descriptors that all

* alias the same output y vector. During the course of

* execution, they will advance asynchronously. Notice:

* accumulators for zp and zm contributions are shifted by one.

*/

tensor xp_acc = {.base=y+1, .shape={1,Z}, .stride={0,1} };

tensor xm_acc = {.base=y+1, .shape={1,Z}, .stride={0,1} };

tensor yp_acc = {.base=y+1, .shape={1,Z}, .stride={0,1} };

tensor ym_acc = {.base=y+1, .shape={1,Z}, .stride={0,1} };

tensor zp_acc = {.base=y+2, .shape={1,Z}, .stride={0,1} };

tensor zm_acc = {.base=y+0, .shape={1,Z}, .stride={0,1} };

tensor c_acc = {.base=y+1, .shape={1,Z}, .stride={0,1} };

/* Initialize DSRs to traverse the local x vector.

* We use two descriptors because we make two traversals

* from separate threads concurrently.

*/

tensor x0 = {.base=x, .shape={1,Z+1}, .stride={0,1} };

tensor x1 = {.base=x, .shape={1,Z }, .stride={0,1} };

/* Hardware will schedule a task when it is activated

* and not blocked. Initially we block SPMV completion

* tasks. Special instructions block(), unblock(),

* activate() and machine events such as completion

* of a background thread can manipulate these task states.

*/

taskset sched_block = { xdone, ydone, cdone, xydone, xycdone };

taskset sched_activate = { };

task spmv {

/* Initialize DSRs as fabric I/O descriptors.

* Instructions that use these descriptors are run by the

* hardware as background threads in the specified thread slot.

* When the operation is completed it can unblock or activate a task.

* Reload the DSRs because their use in threads modifies them.

*/

fabric xp_rx={.thr=0, .len=Z, .trig=xdone, .act=ACTIVATE};

fabric xm_rx={.thr=1, .len=Z, .trig=xdone, .act=UNBLOCK };

fabric yp_rx={.thr=2, .len=Z, .trig=ydone, .act=ACTIVATE};

fabric ym_rx={.thr=3, .len=Z, .trig=ydone, .act=UNBLOCK };

fabric zp_rx={.thr=4, .len=Z, .trig=cdone, .act=ACTIVATE};

fabric c_tx ={.thr=5, .len=Z};

fabric c_rx ={.thr=6, .len=Z, .trig=cdone, .act=UNBLOCK};

/* Finally, we see the first executable code. It is often

* the case that most of the code specifies DSR setup and

* task dependencies; the executable code itself is

* just the arithmetic that operates over the above structure.

*/

/* Launch thread to send local vector to four neighbors

* and mirror to ourselves. */

c_tx[] = x1[];

/* Initialize the output vector with x*zm.

* This runs in the main thread and completes

* before any subsequent lines are executed.

*/

zm_acc[] = x0[] * zm_a[];

/* Launch five threads write to FIFOs of vector length Z. */

xp_fifo[] = xp_rx[] * xp_a[];

xm_fifo[] = xm_rx[] * xm_a[];

yp_fifo[] = yp_rx[] * yp_a[];

ym_fifo[] = ym_rx[] * ym_a[];

zp_fifo[] = zp_rx[] * zp_a[];

/* Launch a thread to handle the main diagonal.

* Because the diagonal is all ones there is

* no FIFO and no multiplication.

*/

c_acc[] = c_acc[] + c_rx[];

}

/* The FIFO write threads run asynchronously.

* When they push data into a FIFO, they also activate

* a summation task. The summation task reads all available

* data from the FIFOs sequentially, adding the values to

BiCGStab: Building Blocks

Interprocessor
Communication
• The wafer is a dataflow computer:

• Pre-routed virtual channels (“colors”)
• Single word packets
• Single clock latency
• Arrival triggers a task
• Data arrives in registers
• 24 colors
• Link level flow control
• Communication in the ISA

xp_fifo

x-1 x+1

y+1

y-1

x-1 x+1

y+1

y-1

thread 0

thread 1

spmvtask

X

Fabric
input

Fabric
output

+

+

+

+

+

sumtask
xp

xm

yp

ym

zp

zm

uv

In
-m

em
or

y
in

pu
ts

In-memory result

FIFOs
term[0]

term[1]

term[2]

term[3]

term[4]

v1

v0

Router

xp_a

xp_rx xp_fifo xp_acc

xm_fifo xm_acc

yp_fifo

ym_fifo

zp_fifo

yp_acc

ym_acc

zp_acc

thread 2

thread 3

thread 4

thread 5

xm_a

yp_a

ym_a

zp_a

c_accc_rx

zm_a

X

X

X

X

+

xm_fifo

yp_fifo

ym_fifo

zp_fifo

xm_rx

yp_rx

ym_rx

zp_rx

zm_acc
X

(write) (read)

(write) (read)

(write) (read)

(write) (read)

(write) (read)

c_tx

Fig. 5. Implementation of SpMV. Shaded regions represent memory objects, annotated arrows are tensor descriptors, and white boxes are tasks
that perform computations. The diagram uses the names of objects in the code of Listing 1.

to continue to push into them.
The tensor descriptors of the add inputs track the total

number of elements pulled from each FIFO, activating a
completion task (not shown) for each of the five vector
adds when they are finished. These completion tasks
use a barrier technique to detect when all six of the
vector adds have completed so that they can indicate
the completion of the SpMV operation.

The six add threads add to elements of the result
vector. The additions occur one at a time (or two at
a time in and SIMD operation). They occur in a non-
deterministic order. But there is no danger of a data race,
and no locks need be acquired, as the hardware handles
the interleaving, working on only one thread at a time.
Because floating point add is not associative, the round-
ing errors in this implementation are not deterministic.
(And addition is also non-deterministic when on a shared
memory machine a shared accumulator is protected by
a lock.) But we use 32-bit adds, so they are negligible.

2) SpMV (2D): We sketch an implementation a 2D
version of the SpMV computation that operates over
a 9-point stencil. The 2D implementation runs on our
simulators but we have not measured performance on a
laboratory machine.

For the 2D problem we map a rectangular region of

Fig. 6. Tessellation routing pattern for SpMV: a single core pushes its
content into adjacent cores’ fabric router using a single communication
channel. Messages from the four neighbors arrive on four distinct
channels and are processed by corresponding microthreads. This allows
us to achieve high fabric utilization due to the fact that we can send
the data in 4 directions in a single cycle. WSE allows the fabric to be
dynamically reconfigured. Such adaptive topology plays a significant
role in offloading routing logic from cores, which can be used primarily
for computation.

x-y grid space to each core. For each meshpoint that is
stored in a core, the nine corresponding matrix weights

Allreduce in 1.3 𝜇𝑠

Sparse matrix vector product via vector operations and dataflow

×
Thread 1

×
Thread 2

×
Thread 3

×
Thread 4

×
Thread 5

×
Thread 6

Σ +
Thread 7

X—

Weights

Y—

Weights

Z—

Weights

X＋
Weights

Y＋
Weights

Z＋
Weights

Activations

Thread 8

Result

X— X＋C

Y＋

Y—

Σ +

Σ +

Σ +

Σ +

Σ +

FIFO

FIFO

FIFO

FIFO

FIFO

Processor Core

Router

Addressable
Memory

Thread Register Fabric Colors

Writing your own code: The SDK

● The SDK: Low-level programming for creating custom kernels

• DSL with abstractions for the lower-level constructs of the WSE architecture

• Libraries for common primitives, such as communication, BLAS, rand, etc

• Debugger and performance profiling tools

• Hardware simulator

• Examples and documentation: language specification, sample code, and
programming guides

Beta --- September 2021

• 0.86 PF/s
(600x600x1536)

• Over 30 % of peak
• 28 usecs / iteration
• ~200 X cluster

Results

6 ms vs 28 us ---------->

On NETL Xeon Cluster

National Energy Technology Lab

*Plots are from customer’s cost models.

Implication

Strong scaling is attainable for problems that
fit on the wafer

Making an Impact: Real Time CFD

Real Time CFD
• Online Equipment Monitoring
• Cyber-Physical Security
• Failure Prediction
• Renewable Integration
• Dynamic Baseload Power
• Higher Efficiencies
• Safer Operation
• Better Command and Control

"Steam turbine rotor produced by Siemens, Germany“
by Christian Kuhna is licensed under CC BY 3.0

https://commons.wikimedia.org/wiki/File:Dampfturbine_Laeufer01.jpg
https://creativecommons.org/licenses/by-sa/3.0/deed.en

Conclusion

