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Motivation

Scientific Computing on TPUs

● The recent success of deep learning has spurred the new wave of hardware 
accelerators.

● One such example is Google’s Tensor Processing Unit (TPU).
● TPU has strength in tensor operations.
● In witnessing how scientific computing applications benefit from the advancement 

of hardware accelerators, it is tempting to ask whether TPU be useful for scientific 
computing.

● We seek an answer to this question through the case studies.
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Paragraph starts...

Motivation

Formulation decisions

- Formulate the problem based on the hardware 
architecture.

Tensor operations

- Design the building blocks of the applications such as 
non-uniform Fourier transform, sparsifying transform, 
encoding of sensitivity profiles all as tensor operations.

Data decomposition and communication strategy

- Select highly parallelizable methods, ADMM, CG
- Minimize communication (high parallel efficiency).
- Design data decomposition to localize tensor 
operations on individual cores.

Load balancing

- Determine the size of operands for the localized tensor 
operations.

Chip/Package level

Board level

System level

Hardware architecture (TPU v3) overview

- Designed as a co-processor on the I/O bus;
- four chips per board, two cores per chip;
- each board pairing up with one CPU host;
- a total number of 2048 cores in a Pod.

MXU

- Bulk of the computing power
- with 16 K multiply-accumulate (MAC) operations 
per clock cycle.

Interconnect topology

- 2D torus
- dedicated and on-device, not going through host 
CPU
- high-speed and low-latency

Memory

- high-bandwidth memory (HBM)
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Case studies

● Fourier transform
○ Discrete Fourier transform (DFT)1

○ Fast Fourier transform (FFT)1

○ Nonuniform fast Fourier transform (NUFFT)2

● Linear system solver
○ Conjugate gradient (CG) method3

● Numerical optimization
○ Alternating direction method of multipliers (ADMM)3

● The applications in medical imaging3
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Case Study 1: Discrete Fourier Transform on TPUs

● DFT is critical in many scientific and engineering applications.
● General form of DFT

● Matrix Form
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Case Study 1: Discrete Fourier Transform on TPUs

● Three-dimensional (3D) DFT

● Matrix Form
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Case Study 1: The One-Shuffle Algorithm on TPUs

● Advantages of the one-shuffle scheme:
○ tensor operations are localized on individual cores;
○ communication (sending and receiving data among cores) takes place along 

the same direction on the interconnect network;
○ and it achieves high parallel efficiency.
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Case Study 1: The One-Shuffle Algorithm on TPUs
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Case Study 1: Discrete Fourier Transform on TPUs

● Strong scaling analysis
● Define ideal time of linear scaling as a 

reference

● The total computation time has a 
close-to-linear scaling.
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2D DFT, fixed problem size of 8192 x 8192; 
up to 128 TPU cores being used.



Case Study 1: Discrete Fourier Transform on TPUs

● Strong scaling analysis:
● Define ideal time of linear scaling as a 

reference

● The total computation time has a 
close-to-linear scaling.
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3D DFT, fixed problem size of 2048 x 2048 x 
2048, and  up to 256 TPU cores being used.



Case Study 2: Fast Fourier Transform on TPUs

● The FFT formulation starts with

● The global index n can be expressed as

● Rewrite as phase adjustment and localized transform
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Case Study 2: Fast Fourier Transform on TPUs

The parallel algorithm
● (a) Data decomposition.
● (b) The gathering of input for in-order 

transform.
● (c)  The transform performed locally on 

individual cores.
● (d) Applying phase adjustment with the 

one-shuffle algorithm.
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Case Study 2: Fast Fourier Transform on TPUs

● Strong scaling analysis.
● Define ideal time of linear scaling as a 

reference

● The total computation time has a 
close-to-linear scaling.
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2048, and up to 128 TPU cores being used.



Case Study 2: Fast Fourier Transform on TPUs

● The computation time of a few 3D DFT 
and FFT examples on a full TPU v3 Pod 
with 2048 cores.

● The runtimes reported in the table are for 
complex transforms.

● As a reference, the runtime of a real FFT 
for the problem size 8192 x 8192 x 8192 
on CPUs: 2048 nodes of Fujitsu 
PRIMERGY CX1640 M1 cluster is 5.36 
seconds (converted from 10 TFlops, D. 
Takahashi 2019).
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Case Study 3: NUFFT on TPUs

reader Preprocessing

NUFFT

Apodization FFT Interpolation
Input
data

● NUFFT ● Matrix form
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Case Study 3: NUFFT on TPUs

Preprocessing

Perform checker-board partition to an oversampled image into patches.
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Case Study 3: NUFFT on TPUs

Pad tensors of kernel coefficients with zeros. Shuffle kernel coefficients along the k-space dimension.

Preprocessing
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Case Study 3: NUFFT on TPUs

Load balancing

Each TPU core contains partial k-space information.
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Case Study 3: NUFFT on TPUs

Interpolation in Forward NUFFT

Transform onto nonuniform grids:
● Tensor contraction between kernel 

coefficients and patches along patch 
dimension.

● Matrix multiplication with a Boolean 
mask.

● Reduce sum along the patch dimension.
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Case Study 3: NUFFT on TPUs

Interpolation in Adjoint NUFFT

Transform onto the uniform grids:
● Scale the kernel coefficients with k-space data
● Tensor contraction with a Boolean mask 

along the k-space dimension.

Patches are assembled back to the image.
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Case Study 3: NUFFT on TPUs

Computation on three types of hardware for 
forward NUFFT: 

● CPU: Intel(R) Xeon(R) Silver 4110 
8-core 2.10 GHz

● GPU: Nvidia V100
● TPU: one TPU v3 unit (eight cores).
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Case Study 3: NUFFT on TPUs

Adjoint NUFFT

● Image size: 512 x 512
● Oversampling factor: 2
● Number of points in k-space: 412,160
● Strong scaling:

○ Number of TPU cores: 2 to 128
○ Number of partitions: 16 along each 

dimension
● Computation time versus partitions

○ 16 TPU cores
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Magnetic resonance imaging (MRI) is a powerful 
medical imaging modality:

● non-invasive
● excellent soft-tissue contrast
● high spatial resolution

MRI has revolutionized the field of medical imaging 
since its invention in 1970s.

Computation in MR image reconstruction is now the 
new bottleneck:

● MR data acquisition speed is approaching the 
physical limits.

● Further acceleration of MR requires breaking 
the Nyquist sampling criterion by sparse 
sampling and constrained image reconstruction.

● However, the state-of-the-art MR image 
reconstruction methods often build upon 
large-scale, iterative, optimization algorithms

○ with extensive usage of non-uniform 
Fourier transform

○ computationally infeasible for practical 
clinical use.

Case Study 4: ADMM and CG on TPUs
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Case Study 4: ADMM and CG on TPUs

● MRI signal model 

● In compressed sensing, one reconstructs an 
image from the undersampled k-space data by 
solving

● We use the Alternating Direction Method of 
Multipliers (ADMM) to solve the large-scale convex 
optimization problem

● ADMM consists of three updates:

Data fidelity Sparsity
constraint
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Case Study 4: ADMM and CG on TPUs

● The update of the auxiliary variable has a closed-form 
solution

and the element-wise soft thresholding can be 
written as

● The update of the primal variable (complex image 
intensities) can be considered as a regularized least 
square problem.

● The necessary and sufficient optimality condition is

where

● This is solved iteratively by using the conjugate 
gradient (CG) method.
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Case Study 4: ADMM and CG on TPUs

Data decomposition applied to data and DFT 
operator.

● The data decomposition is applied to the k-space.
● DFT and sparsifying transform operations

○ The DFT operation and its adjoint are formulated as 
tensor contractions (tf.einsum).

○ The sparsifying transform operation and its adjoint are 
formulated as convolutions (tf.nn.conv1d).
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Case Study 4: ADMM and CG on TPUs

● Communication strategy
● ADMM has three updates per iteration:

○ The update of the auxiliary variable is local.
○ The update of the dual variable is local.
○ The update of the primal variable is through 

CG solver, requiring communication 
(tf.cross_replica_sum) to sum the partial images 
across TPU cores such that all cores start the 
new CG iteration with the same image.
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Case Study 4: ADMM and CG on TPUs

Accuracy benchmark
● The k-space data were retrospectively undersampled with an 

undersampling factor of eight to demonstrate the capability of 
compressed sensing in accelerating MR. 

● The total number of k-space measurements was 19,968 (1,664 
samples per coil and 12 coils in total). 

● The images were reconstructed on a 128 x 64 uniform grid.
● The relative difference is about 1% for the voxels within the 

phantom, which is satisfactory.

ADMM CG

Regularization
parameter

Augmented 
Lagrangian 
parameter

Relative 
tolerance

Maximum 
number of 
iterations

Absolute 
tolerance

Maximum 
number of 
iterations

1e-7 1.0 1e-4 5 1e-6 20
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Case Study 4: ADMM and CG on TPUs

Parallel Efficiency
● The strong scaling analysis was adopted to understand the parallel 

efficiency.
● Phantom data were acquired by using 804 radial readouts, each with 

1024 samples.
● The fully sampled k-space data were then retrospectively undersampled 

by a factor of eight, resulting in a total number of 1,241,076 k-space 
measurements (103,424 measurements per coil, 12 coils in total). 

● Runtimes on CPU (Intel(R) Xeon(R) Silver 4110 8 core 2.1 GHz) and 
GPU (NVIDIA V100 SXM2).
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● Through the few case studies, we explore using TPU for scientific computing.
● The case studies include Fourier transform (DFT, FFT, NUFFT), linear system 

solver (CG), numerical optimization (ADMM), and their applications in 
medical imaging.

● We formulate the problem and design the algorithms in accordance with TPU’s 
strength in tensor operations and its high-speed interconnect network.

● TPU achieves good acceleration for these scientific computing applications. 

Conclusion
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