Google Research

Case Studies on Accelerating Scientific Computing Applications with TPUs

Tianjian Lu and Yi-Fan Chen June 2021

Motivation

Scientific Computing on TPUs

- The recent success of deep learning has spurred the new wave of hardware accelerators.
- One such example is Google's Tensor Processing Unit (TPU).
- TPU has strength in tensor operations.
- In witnessing how scientific computing applications benefit from the advancement of hardware accelerators, it is tempting to ask whether TPU be useful for scientific computing.
- We seek an answer to this question through the case studies.

Motivation

operations.

- Determine the size of operands for the localized tensor

Google Research

Hardware architecture (TPU v3) overview **Formulation decisions** Chip/Package level - Designed as a co-processor on the I/O bus; TPU Chip - four chips per board, two cores per chip; - Formulate the problem based on the hardware TPU Core TPU Core architecture - each board pairing up with one CPU host; 11 11 11 11 - a total number of 2048 cores in a Pod. MXU 128 X 128 128 X 128 128 X 128 **Tensor operations** MXU **Board level** - Design the building blocks of the applications such as - Bulk of the computing power - with 16 K multiply-accumulate (MAC) operations non-uniform Fourier transform, sparsifying transform, encoding of sensitivity profiles all as tensor operations. per clock cycle. Interconnect topology Data decomposition and communication strategy System level - Select highly parallelizable methods, ADMM, CG - 2D torus - Minimize communication (high parallel efficiency). - dedicated and on-device, not going through host - Design data decomposition to localize tensor CPU - high-speed and low-latency operations on individual cores. Load balancing Memory

- high-bandwidth memory (HBM)

Case studies

- Fourier transform
 - Discrete Fourier transform $(DFT)^1$
 - Fast Fourier transform $(FFT)^1$
 - Nonuniform fast Fourier transform $(NUFFT)^2$
- Linear system solver
 - Conjugate gradient (CG) method³
- Numerical optimization
 - Alternating direction method of multipliers $(ADMM)^3$
- The applications in medical imaging³

- 1. Lu, Tianjian, Yi-Fan Chen, Blake Hechtman, Tao Wang, and John Anderson. "Large-scale discrete Fourier transform on TPUs." *IEEE Access* (2021).
- 2. Lu, Tianjian, Thibault Marin, Yue Zhuo, Yi-Fan Chen, and Chao Ma. "Nonuniform Fast Fourier Transform on Tpus." In 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), pp. 783-787. IEEE, 2021.
- 3. Lu, Tianjian, Thibault Marin, Yue Zhuo, Yi-Fan Chen, and Chao Ma. "Accelerating MRI Reconstruction on TPUs." In 2020 IEEE High Performance Extreme Computing Conference (HPEC), pp. 1-9. IEEE, 2020.

Case Study 1: Discrete Fourier Transform on TPUs

- DFT is critical in many scientific and engineering applications.
- General form of DFT

$$X_k \triangleq X(z_k) = \sum_{n=0}^{N-1} x_n z_k^{-n}$$

• Matrix Form

 $\left\{ X\right\} =\left[V\right] \left\{ x\right\} ,$

where

$$\{X\} = (X(z_0), X(z_1), \cdots, X(z_{N-1}))^{\mathrm{T}}, \{x\} = (x_0, x_1, \cdots, x_{N-1})^{\mathrm{T}},$$

and

$$[V] = \begin{pmatrix} 1 & z_0^{-1} & z_0^{-2} & \cdots & z_0^{-(N-1)} \\ 1 & z_1^{-1} & z_1^{-2} & \cdots & z_1^{-(N-1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & z_{N-1}^{-1} & z_{N-1}^{-2} & \cdots & z_{N-1}^{-(N-1)} \end{pmatrix}.$$

Case Study 1: Discrete Fourier Transform on TPUs

• Three-dimensional (3D) DFT

$$X(z_{1k}, z_{2k}, z_{3k}) = \sum_{n_1=0}^{N_1-1} \sum_{n_2=0}^{N_2-1} \sum_{n_3=0}^{N_3-1} x(n_1, n_2, n_3) z_{1k}^{-n_1} z_{2k}^{-n_2} z_{3k}^{-n_3}$$

Matrix Form

$$\{X\} = [V_1] \otimes [V_2] \otimes [V_3] \{x\},\$$

where

$$[V_j] = \begin{pmatrix} 1 & z_{j0}^{-1} & z_{j0}^{-2} & \cdots & z_{j0}^{-(N_j-1)} \\ 1 & z_{j1}^{-1} & z_{j1}^{-2} & \cdots & z_{j1}^{-(N_j-1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & z_{j,N_j-1}^{-1} & z_{j,N_j-1}^{-2} & \cdots & z_{j,N_j-1}^{-(N_j-1)} \end{pmatrix}$$

$$j \in \{1, 2, 3\}.$$

Case Study 1: The One-Shuffle Algorithm on TPUs

Google Research

Ρ7

- Advantages of the one-shuffle scheme:
 - tensor operations are **localized** on individual cores;
 - communication (sending and receiving data among cores) takes place along the same direction on the interconnect network;
 - and it achieves high parallel efficiency.

Case Study 1: The One-Shuffle Algorithm on TPUs

Google Research

Algorithm 1 The one-shuffle scheme

- 1: **function** ONE_SHUFFLE(v, x, core_idx, num_cores, src_tgt_pairs)
- 2: iteration_idx $\leftarrow 0$
- 3: slice_idx \leftarrow core_idx
- 4: $x_out \leftarrow einsum(v[slice_idx], x)$
- 5: slice_idx \leftarrow mod(slice_idx + 1, num_cores)
- 6: while iteration_idx < num_cores -1 do
- 7: $x \leftarrow collective_permute(x, src_tgt_pairs)$
- 8: $x_out \leftarrow x_out + einsum(v[slice_idx], x)$
- 9: $slice_idx \leftarrow mod(slice_idx + 1, num_cores)$
- 10: $iteration_idx \leftarrow iteration_idx + 1$
- 11: **return** x_out

Case Study 1: Discrete Fourier Transform on TPUs

- Strong scaling analysis
- Define ideal time of linear scaling as a reference

ideal time =
$$\frac{T_2}{\frac{N_{\text{core}}}{2}}$$

• The total computation time has a **close-to-linear scaling**.

2D DFT, fixed problem size of 8192 x 8192; up to 128 TPU cores being used.

Case Study 1: Discrete Fourier Transform on TPUs

- Strong scaling analysis:
- Define ideal time of linear scaling as a reference

ideal time =
$$\frac{T_{32}}{\frac{N_{\text{core}}}{32}}$$

• The total computation time has a close-to-linear scaling.

3D DFT, fixed problem size of 2048 x 2048 x 2048, and up to 256 TPU cores being used.

Case Study 2: Fast Fourier Transform on TPUs

• The FFT formulation starts with

$$X_k \triangleq \sum_{n=0}^{N-1} x_n e^{-j2\pi \frac{nk}{N}}.$$

• The global index *n* can be expressed as

$$n = Pl + \beta,$$

where
$$l = 0, 1, \dots, \frac{N}{P} - 1$$
 and $\beta = 0, 1, \dots, P - 1$.

• Rewrite as phase adjustment and localized transform

$$X_{k} \triangleq \sum_{n=0}^{N-1} x_{(Pl+\beta)} e^{-j2\pi \frac{(Pl+\beta)k}{N}}$$
$$= \sum_{\beta=0}^{P-1} e^{-j2\pi \frac{\beta k}{N}} \left(\sum_{l=0}^{N-1} x_{(Pl+\beta)} e^{-j2\pi \frac{lk}{N}} \right).$$

Google Research

Case Study 2: Fast Fourier Transform on TPUs

Google Research

The parallel algorithm

- (a) Data decomposition.
- (b) The gathering of input for in-order transform.
- (c) The transform performed locally on individual cores.
- (d) Applying phase adjustment with the **one-shuffle algorithm**.

Case Study 2: Fast Fourier Transform on TPUs

- Strong scaling analysis.
- Define ideal time of linear scaling as a reference

ideal time =
$$\frac{T_{16}}{\frac{N_{\rm core}}{16}}$$

• The total computation time has a close-to-linear scaling.

3D FFT, fixed problem size of 2048 x 2048 x 2048, and up to 128 TPU cores being used.

Google Research

Case Study 2: Fast Fourier Transform on TPUs

- The computation time of a few 3D DFT and FFT examples on a full TPU v3 Pod with 2048 cores.
- The runtimes reported in the table are for **complex** transforms.
- As a reference, the runtime of a real FFT for the problem size 8192 x 8192 x 8192 on CPUs: 2048 nodes of Fujitsu PRIMERGY CX1640 M1 cluster is 5.36 seconds (converted from 10 TFlops, D. Takahashi 2019).

D. Takahashi, "Implementation of parallel 3-D real FFT with 2-D decomposition on Intel Xeon Phi clusters," in *International Conference on Parallel Processing and Applied Mathematics*. Springer, 2019, pp. 151– 161.

	No.	Problem size	Time (seconds)		
		1 toblem size	DFT	FFT	
	1	$8192\times8192\times8192$	12.66	8.30	
	2	$4096 \times 4096 \times 4096$	1.07	1.01	
	3	$2048 \times 2048 \times 2048$	0.120	0.118	
	4	$1024 \times 1024 \times 1024$	0.0220	0.0148	

• NUFFT

$$s(k_{x,m}, k_{y,m}) = \sum_{n=1}^{N} \rho_n e^{-i2\pi(k_{x,m}x_n + k_{y,m}y_n)}$$

where $(k_{x,m}, k_{y,m})$, $m = 1, 2, \cdots, M$ represents the k-space coordinates on a nonuniform grid, (x_n, y_n) , $n = 1, 2, \cdots, N$ represents the spatial coordinates on a uniform grid, and ρ_n denotes the image intensity on grid (x_n, y_n) . • Matrix form

$$s = CFD\rho$$

where D is the apodization operator, F denotes the FFT operator, and C represents the interpolation operator.

Preprocessing

Perform checker-board partition to an oversampled image into patches.

Preprocessing

Pad tensors of kernel coefficients with zeros.

Shuffle kernel coefficients along the k-space dimension.

Google Research

Load balancing

Each TPU core contains partial k-space information.

Interpolation in Forward NUFFT

Transform onto nonuniform grids:

- Tensor contraction between kernel coefficients and patches along patch dimension.
- Matrix multiplication with a Boolean mask.
- **Reduce sum** along the patch dimension.

Interpolation in Adjoint NUFFT

Transform onto the uniform grids:

- Scale the kernel coefficients with k-space data
- **Tensor contraction** with a Boolean mask along the k-space dimension.

Patches are assembled back to the image.

Computation on three types of hardware for forward NUFFT:

- CPU: Intel(R) Xeon(R) Silver 4110 8-core 2.10 GHz
- GPU: Nvidia V100
- TPU: one TPU v3 unit (eight cores).

	Time (ms)			
Image size	CPU	GPU	TPU	
64 x 64	18.97	2.89	0.11	
128 x 128	75.04	3.08	0.36	
256 x 256	250.5	3.02	1.23	
512 x 512	1135.19	3.04	5.41	

Adjoint NUFFT

- Image size: 512 x 512
- Oversampling factor: 2
- Number of points in k-space: 412,160
- Strong scaling: •
 - Number of TPU cores: 2 to 128 Ο
 - Number of partitions: 16 along each Ο dimension
- Computation time versus partitions
 - 16 TPU cores Ο

Magnetic resonance imaging (MRI) is a **powerful** medical imaging modality:

- non-invasive
- excellent soft-tissue contrast
- high spatial resolution

MRI has revolutionized the field of medical imaging since its invention in 1970s.

Magnetic Resonance Imaging (MRI) units per million population, 2019

Japan					55.2
United States				40.4	
Germany			34.7		
Austria		23.5			
Comparable Country Average		22.3			
France	15.4				
Australia	14.8				
Netherlands	13.1				
Belgium	11.6				
Canada	10.4				

Notes: Data for Austria and the Netherlands are from 2018. Data for Germany and Japan are from 2017.

Source: Kaiser Family Foundation Analysis of OECD Data

Peterson-KFF Health System Tracker Computation in MR image reconstruction is now the new **bottleneck**:

- MR data acquisition speed is approaching the physical limits.
- Further acceleration of MR requires breaking the Nyquist sampling criterion by sparse sampling and constrained image reconstruction.
- However, the state-of-the-art MR image reconstruction methods often build upon large-scale, iterative, optimization algorithms
 - with extensive usage of non-uniform Fourier transform
 - **computationally infeasible** for practical clinical use.

Google Research

• MRI signal model

$$d_{\kappa,\gamma} = \sum_{n} s_{n,\gamma} \rho_n e^{-i2\pi \mathbf{k}_{\kappa} \cdot \mathbf{r}_n}$$
$$= [\mathbf{F}(\boldsymbol{\rho})]_{\kappa,\gamma}$$

• In compressed sensing, one reconstructs an image from the undersampled k-space data by solving

$$\min_{\boldsymbol{\rho}} \|\mathbf{F}(\boldsymbol{\rho}) - \mathbf{d}\|_{2}^{2} + \lambda \|\boldsymbol{\Theta}(\boldsymbol{\rho})\|_{1}$$

$$\int \mathbf{Data \ fidelity} \qquad \mathbf{Sparsity}$$

$$\mathbf{constraint}$$

• We use the Alternating Direction Method of Multipliers (ADMM) to solve the large-scale convex optimization problem

$$\min_{\boldsymbol{\rho}} \|\mathbf{F}(\boldsymbol{\rho}) - \mathbf{d}\|_2^2 + \lambda \|\boldsymbol{\mu}\|_1$$

s.t. $\boldsymbol{\Theta}(\boldsymbol{\rho}) - \boldsymbol{\mu} = 0$

• ADMM consists of three updates:

$$\boldsymbol{\mu}^{m+1} = \underset{\boldsymbol{\mu}}{\operatorname{argmin}} \ \lambda \|\boldsymbol{\mu}\|_{1} + \frac{\beta}{2} \|\boldsymbol{\Theta}(\boldsymbol{\rho}^{m}) - \boldsymbol{\mu} + \boldsymbol{\eta}^{m}\|_{2}^{2}$$
$$\boldsymbol{\rho}^{m+1} = \underset{\boldsymbol{\rho}}{\operatorname{argmin}} \|\mathbf{F}(\boldsymbol{\rho}) - \mathbf{d}\|_{2}^{2} + \frac{\beta}{2} \|\boldsymbol{\Theta}(\boldsymbol{\rho}) - \boldsymbol{\mu}^{m+1} + \boldsymbol{\eta}^{m}\|_{2}^{2}$$
$$\boldsymbol{\eta}^{m+1} = \boldsymbol{\eta}^{m} + \boldsymbol{\Theta}\left(\boldsymbol{\rho}^{m+1}\right) - \boldsymbol{\mu}^{m+1}$$

Google Research

• The update of the auxiliary variable has a closed-form solution

$$\boldsymbol{\mu}^{m+1} = S_{\frac{\lambda}{\beta}} \left(\boldsymbol{\Theta} \left(\boldsymbol{\rho}^{m} \right) + \boldsymbol{\eta}^{m} \right)$$

and the element-wise soft thresholding can be written as

$$S_{\frac{\lambda}{\beta}}(\alpha) = \begin{cases} \alpha - \frac{\lambda}{\beta}, & \alpha > \frac{\lambda_1}{\beta} \\ 0, & |\alpha| \le \frac{\lambda}{\beta} \\ \alpha + \frac{\lambda}{\beta}, & \alpha < -\frac{\lambda_1}{\beta} \end{cases}$$

- The update of the primal variable (complex image intensities) can be considered as a regularized least square problem.
- The necessary and sufficient optimality condition is

$$\mathbf{A}\boldsymbol{\rho}^{m+1} = \mathbf{b}$$

where

$$\begin{split} \mathbf{A} &= \mathbf{F}^{\mathrm{H}} \mathbf{F} + \frac{\beta}{2} \mathbf{\Theta}^{\mathrm{H}} \mathbf{\Theta}, \\ \mathbf{b} &= \mathbf{F}^{\mathrm{H}} \mathbf{d} + \frac{\beta}{2} \mathbf{\Theta}^{\mathrm{H}} \left(\boldsymbol{\mu}^{m+1} - \boldsymbol{\eta}^{m} \right) \end{split}$$

• This is solved iteratively by using the **conjugate** gradient (CG) method.

Google Research

Data decomposition applied to data and DFT operator.

- The data decomposition is applied to the k-space.
- DFT and sparsifying transform operations
 - The DFT operation and its adjoint are formulated as **tensor contractions** (tf.einsum).
 - The sparsifying transform operation and its adjoint are formulated as **convolutions** (tf.nn.conv1d).

Alg	Algorithm 1 The generation of the DFT operator on TPUs			
1: 2:	function MAP_TO_UNIT_CIRCLE(k_r_product) return $\exp(-i 2\pi k_r_product)$			
1:	function GEN_DFT_OPERATOR(k_coord, image_coord)			
2:	$kr_dim0 \leftarrow map_to_unit_circle($			
	<pre>einsum(image_coord[0], k_coord[:,0]))</pre>			
3:	kr_dim1 ← map_to_unit_circle(
	einsum(image_coord[1], k_coord[:,1]))			
4:	$dft_op \leftarrow einsum(kr_dim0, kr_dim1)$			
5:	return dft_op			

Google Research

- Communication strategy
- ADMM has three updates per iteration:
 - The update of the **auxiliary** variable is **local**.
 - The update of the **dual** variable is **local**.
 - The update of the **primal** variable is through CG solver, **requiring communication** (tf.cross_replica_sum) to sum the partial images across TPU cores such that all cores start the new CG iteration with the same image.

```
Algorithm 4 ADMM on TPUs
 1: function ADMM STEP(\eta, \rho, \rho_0)
        \mu_next \leftarrow update_auxiliary_var(\rho, \eta)
 2:
         \rho next \leftarrow update_primal_var(\mu next, \rho_0, \eta)
 3:
        \alpha \leftarrow \text{get\_relative\_diff}(\rho\_\text{next}, \rho)
         \eta next \leftarrow update_dual_var(\mu next, \rho, \eta)
 5.
         return \eta_{next}, \rho_{next}, \alpha
 1: function ADMM_RECONSTRUCT(\rho_0, max_iterations, rtol)
       \triangleright \rho_0 contains initial values of \rho and rtol is the relative
 2:
    tolerance in terms of the squared norm of the residual.
         \eta, \rho \leftarrow \text{get initial value}(\rho_0)
 3:
        i \leftarrow 0
 4.
         \alpha \leftarrow 1.0
 5:
         while i < max_iterations & \alpha > square(rtol) do
 6:
              \eta, \rho, \alpha \leftarrow \text{admm\_step}(\eta, \rho, \rho_0)
 7:
              i \leftarrow i + 1
 8.
         return \rho
```

Alg	orithm 2 The conjugate gradient method
1:	function CG_STEP(linear_op, r, d, x, τ) \triangleright d is the
	conjugate vector and r is the the residual vector.
2:	$a_d \leftarrow \texttt{linear_op}(d)$
3:	$\alpha \leftarrow \texttt{divide}(\tau, \texttt{dot_product}(\texttt{d}, \texttt{a_d}))$
4:	$x_{next} \leftarrow x + \alpha d$
5:	$r_next \leftarrow r - \alpha a_d$
6:	$\tau_next \leftarrow dot_product(r_next, r_next)$
7:	$\beta \leftarrow \text{divide}(\tau_\text{next}, \ \tau)$
8:	$d_{next} \leftarrow r_{next} + \beta d$
9:	return r_next, d_next, x_next, τ _next
1:	<pre>function CONJUGATE_GRADIENT(linear_op, b, x0,</pre>
	max_iterations, atol)
2:	\triangleright x0 contains initial values of x and atol is the absolute
	tolerance in terms of the norm of the residual vector.
3:	$\mathbf{x} \leftarrow \mathbf{x} 0$
4:	$r \leftarrow \texttt{linear_op}(x)$
5:	$d \leftarrow r$
6:	$ au \leftarrow \texttt{dot_product}(\mathbf{r},\mathbf{r})$
7:	$\mathbf{i} \leftarrow 0$
8:	while i < max_iterations & τ > square(atol) do
9:	$r_{next}, d_{next}, x_{next}, \rho_{next} \leftarrow cg_{step}($
	$linear_{op, r, d, x, \tau}$
10:	$1 \leftarrow 1 + 1$
10: 11:	$1 \leftarrow 1 + 1$ return x

Accuracy benchmark

- The k-space data were retrospectively undersampled with an undersampling factor of eight to demonstrate the capability of compressed sensing in accelerating MR.
- The total number of k-space measurements was 19,968 (1,664 samples per coil and 12 coils in total).
- The images were reconstructed on a 128 x 64 uniform grid.
- The relative difference is about 1% for the voxels within the phantom, which is satisfactory.

	ADN	CG			
Regularization parameter	Augmented Lagrangian parameter	Relative tolerance	Maximum number of iterations	Absolute tolerance	Maximum number of iterations
1e-7	1.0	1e-4	5	1e-6	20

Fig. Reconstructed phantom images by using retrospectively undersampled data (a) with a single inverse DFT operation and (b) by the ADMM algorithm on CPU and (c) TPUs; and (d) the relative difference between the two images in (b) and (c) $_{P28}$ along the horizontal and vertical center lines of the image.

Parallel Efficiency

- The strong scaling analysis was adopted to understand the parallel efficiency.
- Phantom data were acquired by using 804 radial readouts, each with 1024 samples.
- The fully sampled k-space data were then retrospectively undersampled by a factor of eight, resulting in a total number of 1,241,076 k-space measurements (103,424 measurements per coil, 12 coils in total).
- Runtimes on CPU (Intel(R) Xeon(R) Silver 4110 8 core 2.1 GHz) and GPU (NVIDIA V100 SXM2).

			Comp	outation time (seco	nds)
Hardware Non-uniform Fourier Transform		CPU	GPU	TPU (number of TPU ur	
		NUFFT	NUFFT	I	DFT
Image	128 X 64	2.38	1.17	0.14 (1/4 unit)	0.036 (two units)
Size	1024 X 512	139.88	2.24	3.39 (16 units)	0.29 (128 units)

Fig. 5: The speed-up of reconstructing an image of size 128×64 with up to 16 TPU cores. The number of *k*-space measurements is 19,968 with 1,664 samples for each coil and 12 coils in total.

Fig. 6: The speed-up of reconstructing an image of size 1024×512 with up to 2048 TPU cores. The number of k-space measurements is 1,241,076 with 103,424 samples for 29 each coil and 12 coils in total.

Conclusion

- Through the few case studies, we explore using TPU for scientific computing.
- The case studies include Fourier transform (DFT, FFT, NUFFT), linear system solver (CG), numerical optimization (ADMM), and their applications in medical imaging.
- We formulate the problem and design the algorithms in accordance with TPU's strength in tensor operations and its high-speed interconnect network.
- TPU achieves good acceleration for these scientific computing applications.

Thank You

tianjianlu@google.com

Google Research