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Motivation Google Research

Scientific Computing on TPUs

e The recent success of deep learning has spurred the new wave of hardware
accelerators.

e One such example is Google’s Tensor Processing Unit (TPU).

e TPU has strength in tensor operations.

e In witnessing how scientific computing applications benefit from the advancement
of hardware accelerators, it is tempting to ask whether TPU be useful for scientific
computing.

e We seek an answer to this question through the case studies.
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A

Formulation decisions Hardware architecture (TPU v3) overview

Chip/Package level
- Designed as a co-processor on the I/O bus;
- Formulate the problem based on the hardware - four chips per board, two cores per chip; TG THOGT
architecture. - each board pairing up with one CPU host; m T
- a total number of 2048 cores in a Pod. e e | e
Tensor operations - MXU
Board level
- Design the building blocks of the applications such as - Bulk of the computing power
non-uniform Fourier transform, sparsifying transform, - with 16 K multiply-accumulate (MAC) operations
encoding of sensitivity profiles all as . per clock cycle.
Data decomposition and communication strategy « Interconnect topology
- Select highly parallelizable methods, , - 2D torus
- Minimize communication (high parallel efficiency). - dedicated and on-device, not going through host
- Design data decomposition to CPU
on individual cores. - high-speed and low-latency
Load balancing - Memory

- Determine the size of operands for the localized tensor

- high-bandwidth HBM
operations. igh-bandwidth memory ( )
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Case studies

e Fourier transform
o Discrete Fourier transform (DFT)!
o  Fast Fourier transform (FFT)!
o Nonuniform fast Fourier transform (NUFFT)?
e Linear system solver
o Conjugate gradient (CG) method?
e Numerical optimization
o Alternating direction method of multipliers (ADMM)?
e The applications in medical imaging’

1. Lu, Tianjian, Yi-Fan Chen, Blake Hechtman, Tao Wang, and John Anderson. "Large-scale discrete Fourier transform on TPUs." IEEE
Access (2021).

2. Lu, Tianjian, Thibault Marin, Yue Zhuo, Yi-Fan Chen, and Chao Ma. "Nonuniform Fast Fourier Transform on Tpus." In 2021 IEEE 18th
International Symposium on Biomedical Imaging (ISBI), pp. 783-787. IEEE, 2021.

3. Lu, Tianjian, Thibault Marin, Yue Zhuo, Yi-Fan Chen, and Chao Ma. "Accelerating MRI Reconstruction on TPUs." In 2020 IEEE High
Performance Extreme Computing Conference (HPEC), pp. 1-9. IEEE, 2020.
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Case Study 1: Discrete Fourier Transform on TPUs

e DFT is critical in many scientific and engineering applications.

e (General form of DFT

N-1
X = X(zk) = Z mnzk_”
n=0

e Matrix Form

{X} =[V]{=z},
where
{X} = (X(20), X(21),+, X (2n-1))",
{CB} = ($0,$1,"',$N_1)T,
and
1 25 ome zg V7
1 =it 22 wes
V]= P 1
1 —.2

1 2y 2y21 0 Zy_g
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Case Study 1: Discrete Fourier Transform on TPUs

e Three-dimensional (3D) DFT

Ni—1Ny—1N;3—1

X (21K, 22k, 23k) = E E E x(ny,n2,n3) Zlk Z2k Z3k

n1=0 no=0 n3=0

e Matrix Form

{X} =W]® V] ® [Vs]{x},
where
_ " —(N,—1
1 zjo1 Zj02 jO( )
1zt i ST
V] = j1 31 j1
L =
21 —2. . —(N —-1)
1 ZjNj—1 %jN;j—1 ' ZJ,Nj—l
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Case Study 1: The One-Shuffle Algorithm on TPUs Google Research

e Advantages of the one-shuffle scheme:
O  tensor operations are on individual cores;
o communication (sending and receiving data among cores) takes place
on the interconnect network;
o and it achieves

N3
N; . .
core 0 P Shuffling the input data
3 m N,
i |
core 1 core 0
———
N.
core 1 & —P;?i
P, i
core p s

(a) (b)
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Case Study 1: The One-Shuffle Algorithm on TPUs

Algorithm 1 The one-shuffle scheme

1: function ONE_SHUFFLE(v, X, core_idx, num_cores,

O 00 1 oy N B O3 1Y

—
b=t IO

src_tgt_pairs)

iteration_idx < 0

slice_idx < core_idx

x_out <— einsum(v[slice_idx], x)

slice_idx < mod(slice_idx + 1, num_cores)

while iteration_idx < num_cores — 1 do
X ¢~ collective_permute(x, src_tgt_pairs)
x_out <— x_out + einsum(v[slice_idx], x)
slice_idx < mod(slice_idx + 1, num_cores)
iteration_1dx < iteration_idx + 1

return x_out

(b)

V00 V01 V02
V10 Vll V12
VZ() Vzl VZZ
( V00 V01 V02
( Vlo Vl! VIZ
C VZII VZI V22
( Vlm V01 v02
C V10 Vll VlZ
: V20 VZI V22

(©)

U

Xo0

Xo1

X

Xo1

X1
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Case Study 1: Discrete Fourier Transform on TPUs

e Strong scaling analysis
e Define ideal time of linear scaling as a

reference
. . 15
ideal time = N
2

e The total computation time has a

Time (seconds)

Google Research

T
-FTotal time
—Ideal time ]
<O-Time on einsum |

10"

107 F

10~

8 16 32 64 128
Number of TPU Cores

o
-

2D DFT, fixed problem size of 8192 x 8192;
up to 128 TPU cores being used.
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Case Study 1: Discrete Fourier Transform on TPUs Google Research

10 T T

. . 1F Actual time
e Strong scaling analysis: — ~Tdgal e
e Define ideal time of linear scaling as a
reference
. . T3z
ideal time = N

32

Time (seconds)

e The total computation time has a

1()-1 1 1

32 64 128 256
Number of TPU Cores

3D DFT, fixed problem size of 2048 x 2048 x
2048, and up to 256 TPU cores being used.
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Case Study 2: Fast Fourier Transform on TPUs Google Research

e The FFT formulation starts with

Nl — 27rn—k
X = Z e J N
n=0
e The global index n can be expressed as
n = Pl + 3,

where l = 0,1,--- , & —land 8 =0,1,--- ,P — 1.

® Rewrite as and localized transform
N—1 o (Pl + B)k
Xk = Z CL‘(pH_B)e N
n=0
. ok
P-1 _]2W@ N1 o

e Y zpupe P




Case Study 2: Fast Fourier Transform on TPUs

The parallel algorithm
e (a) Data decomposition.
e (b) The gathering of input for in-order
transform.
® (c) The transform performed locally on
individual cores.
e (d) Applying phase adjustment with the

core

core

(a)

(b)

core 0 D e
core 1 T e
core 2 [ e e

coreP—1 | NN NN DN
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Case Study 2: Fast Fourier Transform on TPUs

e Strong scaling analysis.
e Define ideal time of linear scaling as a
reference

ideal time =

e The total computation time has a

Time (seconds)

10 —

107

Google Research

<F Actual time
— -Ideal time

16 32 64 128
Number of TPU Cores

3D FFT, fixed problem size of 2048 x 2048 x
2048, and up to 128 TPU cores being used.
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Case Study 2: Fast Fourier Transform on TPUs

e The computation time of a few 3D DFT
and FFT examples on a full TPU v3 Pod
with 2048 cores.

e The runtimes reported in the table are for

transforms.
e As areference, the runtime of a FFT
for the problem size 8192 x 8192 x 8192
on : 2048 nodes of Fujitsu

PRIMERGY CX1640 M1 cluster is 5.36
seconds (converted from 10 TFlops, D.
Takahashi 2019).

D. Takahashi, “Implementation of parallel 3-D real FFT with 2-D de-
composition on Intel Xeon Phi clusters,” in International Conference on
Parallel Processing and Applied Mathematics. Springer, 2019, pp. 151-
161.

Google Research

Time (seconds)

No. Problem size
DFT | FFT
1 | 8192 x 8192 x 8192 | 12.66 8.30
2 | 4096 x 4096 x 4096 1.07 1.01
3 | 2048 x 2048 x 2048 | 0.120 | 0.118
4 | 1024 x 1024 x 1024 | 0.0220 | 0.0148
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Case Study 3: NUFFT on TPUs

Input
data Preprocessing

e NUFFT

N
s (ka:,m; k"y,m) — Z pne_izﬂ'(k.r,nll'n‘i‘ky,n1y11)
ni=1
where (kg m,kym), m =1,2,---, M represents the k-space
coordinates on a nonuniform grid, (z,,y,),n =1,2,--- | N
represents the spatial coordinates on a uniform grid, and p,,

denotes the image intensity on grid (x,, yn).

Google Research

Apodization Interpolation ]

NUFFT

e Matrix form

s = CFDp

where D is the apodization operator, F denotes the FFT

operator, and C represents the interpolation operator.



Case Study 3: NUFFT on TPUs Google Research

Preprocessing

kernel width
A i' ---------- ::i 4
patch [{ 0 1
size || i oversampled
¥ i image size
2 3
partition size

Perform checker-board partition to an oversampled image into patches.



Case Study 3: NUFFT on TPUs

Preprocessing

number of
k-space
samples

kernel width

number of
k-space
samples

kernel width

|tk \

patch size

Pad tensors of kernel coefficients with zeros.

number of
k-space
samples

patch size

A————

3

Google Research

number of
k-space
samples

patch index

Shuffle kernel coefficients along the k-space dimension.
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Case Study 3: NUFFT on TPUs

Load balancing

patch size

Ap—lp

number of
k-space
samples

partition
—

number of
k-space
samples
per core

core 0

core 1

Each TPU core contains partial k-space information.

Google Research



Case Study 3: NUFFT on TPUs

Interpolation in Forward NUFFT

Transform onto nonuniform grids:

° between kernel
coefficients and patches along patch
dimension.

° with a Boolean
mask.

° along the patch dimension.

number of
k-space
samples
per core

Google Research

patch size patch size
Gl PN
number
kernel Pf PatCh
e indices
per core
number of patch number of patch
indices per core indices per core
numberof , +«— numberpof” | M=t
k-space k-space Boolean
samples samples b
per core per core
number of K,
k-space k
samples 1

per core



Case Study 3: NUFFT on TPUs

number of
Interpolation in Adjoint NUFFT Al
samples
per core
Transform onto the uniform grids:
° the kernel coefficients with k-space data
° with a Boolean mask
along the k-space dimension.
Patches are assembled back to the image.

patch size

—_—
number of
k-space llio
kernel samples 1
i per core :
atch size number of patch
F—» indices per core
number of | numberof |, +—*
k-space k-space Boolean
samples ] samples sk
per core y per core
patch size
—

number
of patch
indices

per core



Case Study 3: NUFFT on TPUs

Computation on three types of hardware for
forward NUFFT:
e (CPU: Intel(R) Xeon(R) Silver 4110
8-core 2.10 GHz
e GPU: Nvidia V100
e TPU: one TPU v3 unit (eight cores).

Google Research

Time (ms)
Image size CPU GPU | TPU
64 x 64 18.97 2.89 | 0.11
128 x 128 75.04 3.08 | 0.36
256 x 256 250.5 3.02 1.23
512 x 512 | 1135.19 | 3.04 | 541
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Case Study 3: NUFFT on TPUs

Adjoint NUFFT

e Image size: 512 x 512
e  Oversampling factor: 2
e Number of points in k-space: 412,160
e Strong scaling:
o  Number of TPU cores: 2 to 128
o  Number of partitions: 16 along each
dimension
e Computation time versus partitions
o 16 TPU cores

(=)}
B

-l Actual

@ Ideal
32+
16+
a
2
28
a
7]
41
2 ks
1 It 't 1 It 1
2 4 8 16 32 64 128
Number of TPU cores
(@
0.03
0.025
_ 002}
2
ﬁ
0.015
0.01 |
0.005 -~ : L L
4 8 16 32

Number of partitions per dimension

(b)
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Case Study 4: ADMM and CG on TPUs

Magnetic resonance imaging (MRI) is a
medical imaging modality:

® non-invasive

e cxcellent soft-tissue contrast

e high spatial resolution

MRI has revolutionized the field of medical imaging

since its invention in 1970s.

Magnetic Resonance Imaging (MRI) units per million population, 2019

w
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Notes: Data for Austria and the Netherlands are from 2018. Data for Germany and Japan are from2017.

Peterson-KFF

Health System Tracker

Source: Kaiser Family Foundation Analysis of OECD Data
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Computation in MR image reconstruction is now the
new :

e MR data acquisition speed is approaching the
physical limits.

e  Further acceleration of MR requires breaking
the Nyquist sampling criterion by sparse
sampling and constrained image reconstruction.

e However, the state-of-the-art MR image
reconstruction methods often build upon

, , algorithms
o  with extensive usage of

o for practical
clinical use.



Case Study 4: ADMM and CG on TPUs

e MRI signal model

dK’v’Y — : :Sna7pn6_22ﬂ-kﬁ'rn

n

= [F(p)l,

e In compressed sensing, one reconstructs an
image from the undersampled k-space data by
solving

min [[F{(p) - dj3 + Al (p)llx

/ \

Google Research

We use the Alternating Direction Method of
Multipliers ( ) to solve the large-scale convex
optimization problem

min IF (p) — dlf5 + All el
st. ©®(p)—pu=0

ADMM consists of three updates:

: B
p™ = argmin ||p||; + §||@ (P™) =+ "3
%

. p
p" ! = argmin [F (p) — d|l3 + 5[1© (p) — u™ " + ™3
P

,r’m—i—l _ ,r'm +0 (pm—H) _ um—i—l
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Case Study 4: ADMM and CG on TPUs

e The update of the auxiliary variable has a closed-form e
solution

pmtt = Sy (© (p™) +n™) .

and the element-wise soft thresholding can be
written as

AL
oz>5

A
af < 5

Oé—g,
Sa(a) =40,

a—i—%, a<—%1

Google Research

The update of the primal variable (complex image
intensities) can be considered as a regularized least
square problem.

The necessary and sufficient optimality condition is

Apm+1 — b

where

A =Fip ¢ §®H@,

This 1s solved iteratively by using the
method.
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Case Study 4: ADMM and CG on TPUs

0 N N
core P core 0 S
fE
core 1
core 1
core p
core p
—>
Number of coils for k-space data
OR Image dimension
Number of dimensions for k-space coordinates in the DFT operator

Data decomposition applied to data and DFT
operator.

Google Research

e The data decomposition is applied to the k-space.
e DFT and sparsifying transform operations
o  The DFT operation and its adjoint are formulated as

(tf.einsum).

o  The sparsifying transform operation and its adjoint are
formulated as (tf.nn.conv1d).

Algorithm 1 The generation of the DFT operator on TPUs

1

2:

1

2:

3:

. function MAP_TO_UNIT_CIRCLE(k_r_product)
return exp(—i 27 k_r_product)

: function GEN_DFT_OPERATOR(k_coord, image_coord)

kr_dim0 <+ map_to_unit_circle(
einsum(image_coord[0], k_coord][:,0]))

kr_diml < map_to_unit_circle(
einsum(image_coord[1], k_coord[:, 1]))

dft_op + einsum(kr_dim0, kr_diml)

return dft_op




Case Study 4: ADMM and CG on TPUs

Communication strategy
ADMM has three updates per iteration:

O
O
O

The update of the variable is

The update of the variable is

The update of the variable is through
CG solver,

(tf.cross replica sum) to sum the partial images
across TPU cores such that all cores start the

new CG iteration with the same image.

Al

gorithm 4 ADMM on TPUs

1

2:

3
4:
5:
6;
1
2

: function ADMM_STEP(7, p, po)

p_next < update_auxiliary_var(p, 1)
p_next < update_primal_var(u_next, py, 1)
« + get_relative_diff(p_next, p)

n_next < update_dual_var(u_next, p, 1)
return 7)_next, p_next, «

: function ADMM_RECONSTRUCT(pg, max_iterations, rtol)
> pp contains initial values of p and rtol is the relative
tolerance in terms of the squared norm of the residual.
N, p4 get_initial_value(pg)
i<0
a+ 1.0
while i < max_iterations & « > square(rtol) do
7, p, @ <+ admm_step(n, p, po)
i—i+1
return p

Google Research

Algorithm 2 The conjugate gradient method

1: function CG_STEP(linear_op, 1,d, X, 7) > d is the

11:

i oo =X oY IO b (WD

conjugate vector and r is the the residual vector.

a_d + linear_op(d)

a + divide(r, dot_product(d, a_d))
X_next+ x+ad

rnext<—r—aad

7_next < dot_product(r_next, r_next)
B « divide(7_next, T)

d_next «<— r_next+ 3 d

return r_next, d_next, Xx_next, 7_next

: function CONJUGATE_GRADIENT(linear_op! b, x0,

max_iterations, atol)

> x0 contains initial values of x and atol is the absolute
tolerance in terms of the norm of the residual vector.

X  x0

r+ linear_op(x)

d<r

T + dot_product(r,r)

i+0

while i < max_iterations & 7 > square(atol) do
r_next, d_next, X_next, p_next < cg_step(
linear_op,r,d,x,T)
ii+1

return x




Case Study 4: ADMM and CG on TPUs

Accuracy benchmark

e The k-space data were retrospectively undersampled with an
undersampling factor of eight to demonstrate the capability of
compressed sensing in accelerating MR.

e The total number of k-space measurements was 19,968 (1,664
samples per coil and 12 coils in total).

e The images were reconstructed on a 128 x 64 uniform grid.

e The relative difference is about for the voxels within the
phantom, which is satisfactory.

ADMM CG
Regularization Augmen.ted Relative Maximum Absolute Maximum
Lagrangian number of number of
parameter tolerance . . tolerance . .
parameter iterations iterations
1e-7 1.0 1e-4 5 1e-6 20

(b)

T T
—horizontal center line
—vertical center line

Relative difference

le-4

20 40 60 80 100 120

Positions along the horizontal/vertical central lines

Fig. Reconstructed phantom images by using retrospectively
undersampled data (a) with a single inverse DFT operation and

(b) by the ADMM algorithm on CPU and (c) TPUs; and (d)

the relative difference between the two images in (b) and (c) p g
along the horizontal and vertical center lines of the image.



Case Study 4: ADMM and CG on TPUs

Parallel Efficiency
e The analysis was adopted to understand the parallel
efficiency.
e  Phantom data were acquired by using 804 radial readouts, each with

1024 samples.

The fully sampled k-space data were then retrospectively undersampled
by a factor of eight, resulting in a total number of k-space
measurements (103,424 measurements per coil, 12 coils in total).
Runtimes on CPU ( 8 core 2.1 GHz) and
GPU ( SXM2).

Computation time (seconds)
Hardware CPU GPU TPU (number of TPU units)
Non-uniform
Fourier NUFFT | NUFFT DFT
Transform
Image 128 X 64 2.38 1.17 0.14 (1/4 unit) | 0.036 (two units)
Size 1024 X 512 139.88 224 3.39 (16 units) | 0.29 (128 units)

8t - Actual 2
@ Ideal

2 4 8 16
Number of TPU cores

Fig. 5: The speed-up of reconstructing an image of size
128 x 64 with up to 16 TPU cores. The number of k-space
measurements is 19,968 with 1,664 samples for each coil and
12 coils in total.

16F T T

- Actual
-@ Ideal

Speed-up
~

)

1 . . L
M8 256 512 1024 2048

Number of TPU cores
Fig. 6: The speed-up of reconstructing an image of size
1024 x 512 with up to 2048 TPU cores. The number of k-
space measurements is 1,241,076 with 103,424 samples fﬁ;_),r29
each coil and 12 coils in total.
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Conclusion

e Through the few case studies, we explore using TPU for scientific computing.

e The case studies include Fourier transform (DFT, FFT, NUFFT), linear system
solver (CQG), numerical optimization (ADMM), and their applications in
medical imaging.

e We formulate the problem and design the algorithms in accordance with TPU’s
strength in tensor operations and its high-speed interconnect network.

e TPU achieves good acceleration for these scientific computing applications.
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