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SciML Focus Areas

Al for Science
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* Use Science applications
Research to
Advance Al to improve Al

Use of Al

in Science

e Use Al to understand experimental
results (from facilities)

* Smart facilities can improve science —
high quality data, faster results etc.

 About embedding Al at the heart of
facilities operations



Al in Science: Current Landscape at RAL
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Smart Facilities: Current Landscape at RAL
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Research to advance

Many ML methods
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Many different hardware platforms
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Material Sciences Environmental Sciences Particle Physics Astronomy Life Sciences

Benefits to Science

P Baseline performance on a given problem sets a target
» Encourages the community to ‘develop’ better methods
» Availability of curated datasets increase the openness

P Fosters more efficient data-intensive scientific discovery
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GitHub - stfc-sciml/sciml-bench: SciML Benchmarking Suite for Al for Science



https://github.com/stfc-sciml/sciml-bench#readme

SciML Benchmark Suite

Benchmark Suite = Framework + Benchmarks + Datasets

Version 1.0 released with three initial benchmarks:

e em_denoise (Material Sciences)
— 5GB dataset
 dms_scatter (Material Sciences)

— 9GB dataset
* slstr_cloud (Environmental Sciences)

— 187 GB and 2.6 TB datasets
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Benchmarking requirements

* Measure application and computer parameters

* Representative of real applications

* Reflect the interaction between the application and architecture
* Allow parallelisation and scalability studies

* Be easy to deploy and run

Jack Dongarra

Science and

“Whatever we run should be simple to explain and implement”
Technology
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The world of accelerators ...

CPU GPU

+ Large memory capacity + High memory bandwidth

+ High clock frequency + Relatively low clock frequency

+ Large caches (to mask latency) + Cores > 5k

+ Cores < 100 + Optimised for parallel computation
+ Optimised for serial computation + High performance/watt

- Relatively low memory bandwidth - Low memory capacity

- Cache miss very costly - Low per-thread performance

- Low performance/watt
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... and two computing worlds to manage

* Copy data from CPU to GPU

e Copy code (kernel) from CPU to GPU
* Launch kernel on GPU

* Copy results from GPU to CPU

How to accelerate:
 Libraries

* Compiler annotations

* Programming language
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GPU vs CPU: Diffuse Multiple Scattering
benchmark (dms_scatter)

Diffuse Multiple Scattering
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NVIDIA K80 vs V100

M Tesla V100-SXM3-32GB

M Tesla K80

2

GPUs

<

V100 SXM3 32 GB Tesla K80
Technology 12 nm 28 nm
Chip area 815 mm? 561 mm?
GPU type GV100 2 x GK210
Peak Single Precision 14 TFLOPS 5.60 TFLOPS
Peak Double Precision 7 TFLOPS 1.87 TFLOPS
Transistors 21,100 million 7,100 million
CUDA cores 5120 2x2496
Tensor cores 640 n/a
SMs 80 2x13
Bus width 4096 bit 2x384 bit
Memory BDW 1134 GBytes/sec 480 Gbytes/sec
GPU frequency 1290-1530 MHz 562-824 MHz
Maxpowerdraw 300W 306-W
Price: _ ~$10k ~40.5k—




CloudMask benchmark: slstr cloud

Estimation of sea surface temperature

Sentinel-3 satellite: Sea and Land Surface

Temperature Radiometer (SLSTR) instrument

Determine whether the individual pixels of satellite
images contain cloud or a clear sky

* Traditional solution: thresholding or Bayesian methods
* U-Net deep neural network

* Two datasets of DS1-Cloud (180GB) and DS2-Cloud
(2.3+2.6TB)

 Reflectance (6 channels, 2400 x 3000 pixels) SLSTR =5ea and Land Surface
Temperature Radiometer

* Brightness temperature (3 channels, 1200 x 1500 pixels)
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Average time per epoch, s

Scalability and accuracy on PEARL (DGX-2)

CloudMask on 32 GPUs, 100 epochs
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Big data: GB’s to TB's

m 180 GByte

9970 7949
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W 2.3 TByte
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A month of images for:
days: 13542 files, 2.3TB
nights: 15506 files, 2.6TB
Image size: 172MByte
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© ORNL

Peak FLOPS

Max possible Power
Number of Nodes
Node performance
Memory per Node

NV memory per Node
Total System Memory
System Interconnect
Interconnect Topology

Bi-Section Bandwidth
Processors on node

File System

Feature Summit

200 PF
Q3 mw >
4,608
42 TF
512 GB DDR4 + 96 GB HBM2
1.6TB
28 PB +7.4PBNVM
Dual Port EDR-IB (25 GB/s)
Non-blocking Fat Tree
115.2TB/s

2 |IBM POWER?™
6 NVIDIA Volta™

250 PB, 2.5TB/s, GPFS™



Some practical issues — Juri Papay at RAL

* RSA fob — identity check

* No root access

e Singularity container from PEARL does not run (x86 vs ppc64le)
* No IBM Power 9 machines at RAL

* Needed to build container for ppc64le architecture

e Limited disk quota ~52GB, (CloudMask ~200GB — 2.6TB)

e Data transfer nodes ~ 10-20MB/sec

* Max time quota 2 hours



PEARL vs Summit

CloudMask benchmark (epochs=20)
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Future work

e Additional benchmarks in the pipeline:
oDeep-Halo, LIGO, Optical damage, Photoz, ...

* MLCommons Science Working Group
oUNO (CANDLE benchmark from ANL)
oSTEM DL (benchmark from ORNL)

e Additional support for distributed training libraries

* More platforms: ORNL, ANL, NVIDIA A100, Cerebras, Groq, Graphcore, ...
* Code profiling and Inter-GPU communications

* Develop containers for different architectures
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“Al won’t replace the scientist, but scientists who use
Al will replace those who don’t.”

Adapted from a Microsoft report, “The Future Computed”

With thanks to David Womble (ORNL)



