

ML Benchmarks for Scientific Applications

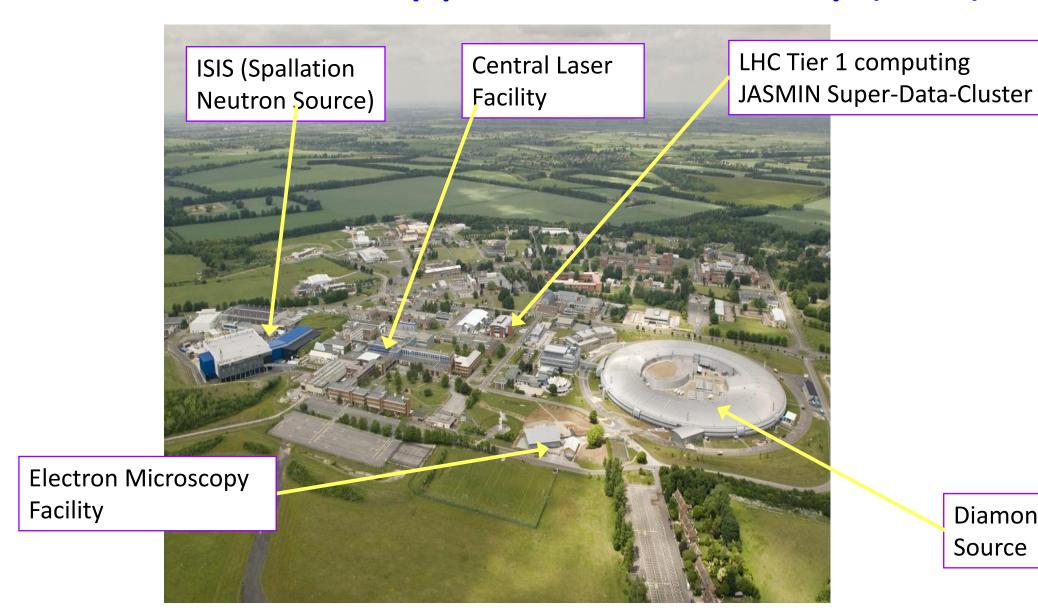
Tony Hey

With Contributions from:

Jeyan Thiyagalingam, Kuangdai Leng, Sam Jackson, Juri Papay, and Keith Butler

SciML Group,
Rutherford Appleton Laboratory,
Science and Technology Funding Council (STFC)

Rutherford Appleton Laboratory (RAL)



Diamond Light Source

SciML Focus Areas

Research to Advance Al

Use Science applications to improve Al

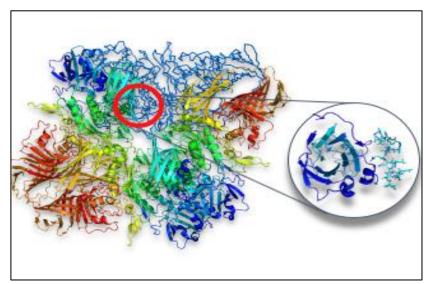
Smart Facilities

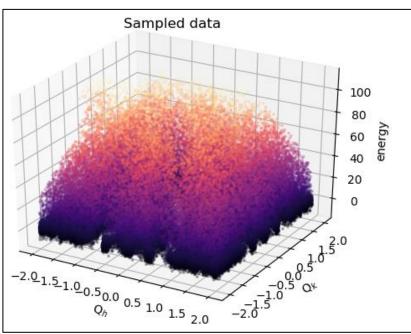
Use of Al in Science

Use AI to understand experimental results (from facilities)

- Smart facilities can improve science –
 high quality data, faster results etc.
- About embedding AI at the heart of facilities operations

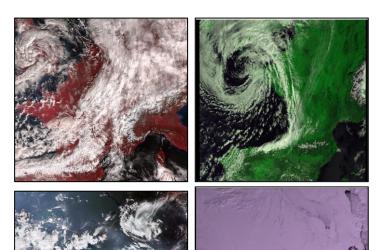
Al in Science: Current Landscape at RAL





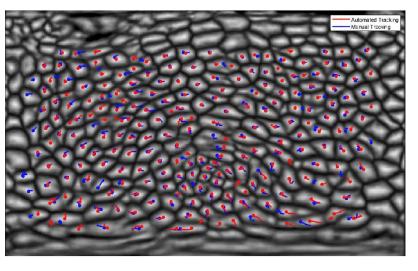
Cryo-EM

Cell Migration

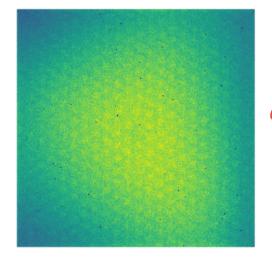


Cloud Masking

Inelastic Neutron Scattering

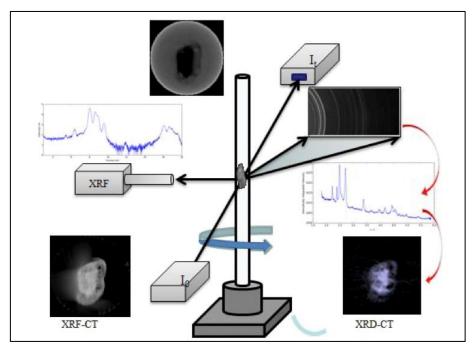


Denoising EM Data



and many more

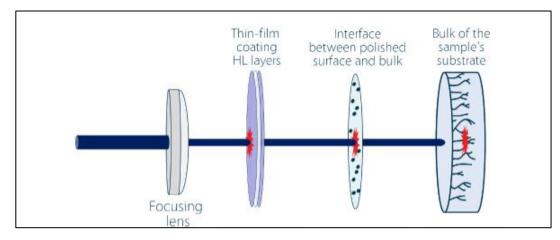
Smart Facilities: Current Landscape at RAL

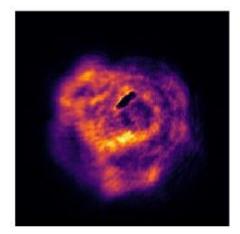


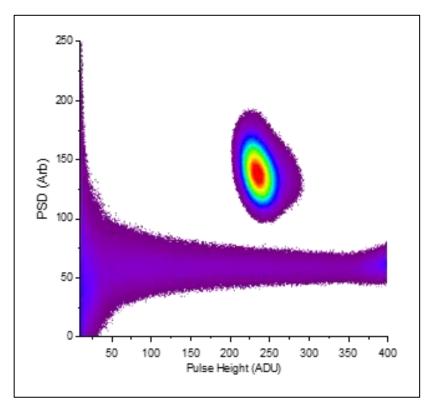
On-the-fly datadriven control of Xray tomography

On-the-fly pulse shape discrimination

Assessing damages to optics in CLF







Credits: Sam Jackson – SciML

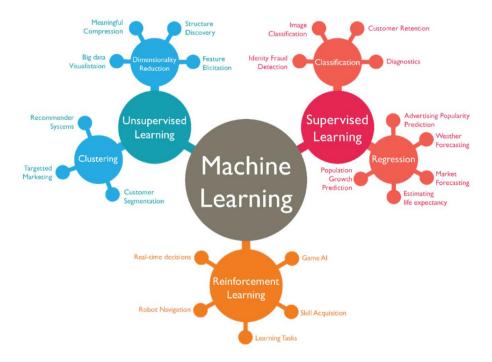
Mark Basham – RFI

Sion Richards – TECH

Rajeev Pattahil - CLF

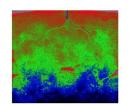
Research to advance AI: Scientific ML Benchmarks

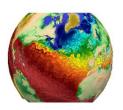
Many ML methods



Many different hardware platforms

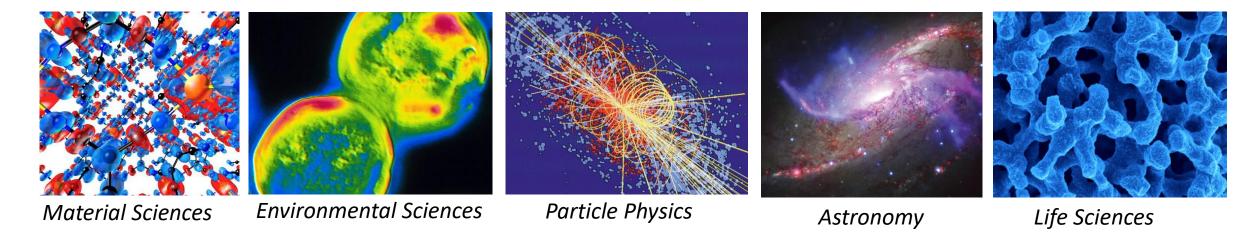
Many scientific domains







Our Domain Coverage



Benefits to Science

- ► Baseline performance on a given problem sets a target
- ► Encourages the community to 'develop' better methods
- Availability of curated datasets increase the openness
- ► Fosters more efficient data-intensive scientific discovery

SciML-Bench: Table of Contents

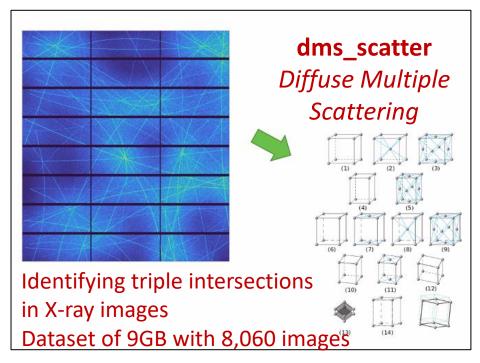
- 1. Synopsis
- 2. Benchmark Suite
 - 2.1 Organisation
 - 2.2 Features
 - 2.3 Benchmarks and Datasets
- 3. Installation and Usage
- 4. Citation
- 5. Acknowledgments

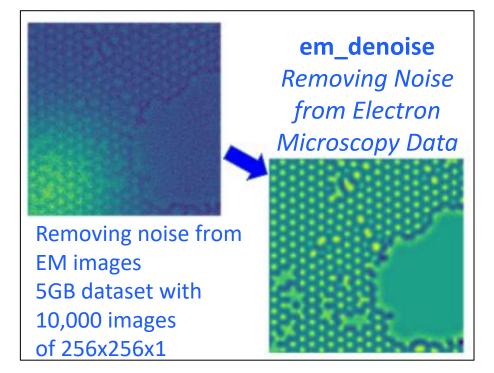
SciML Benchmark Suite

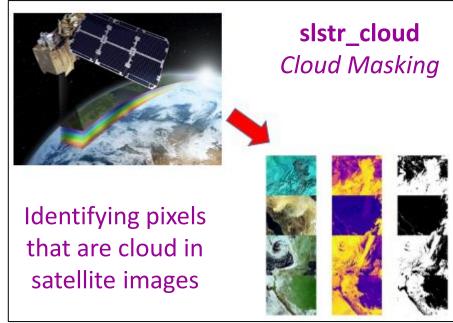
Benchmark Suite = Framework + Benchmarks + Datasets

Version 1.0 released with three initial benchmarks:

- em_denoise (Material Sciences)
 - 5GB dataset
- dms_scatter (Material Sciences)
 - 9GB dataset
- slstr_cloud (Environmental Sciences)
 - 187 GB and 2.6 TB datasets







Benchmarking requirements

- Measure application and computer parameters
- Representative of real applications
- Reflect the interaction between the application and architecture
- Allow parallelisation and scalability studies
- Be easy to deploy and run

"Whatever we run should be simple to explain and implement"

The world of accelerators ...

CPU

- + Large memory capacity
- + High clock frequency
- + Large caches (to mask latency)
- + Cores < 100
- + Optimised for serial computation
- Relatively low memory bandwidth
- Cache miss very costly
- Low performance/watt

GPU

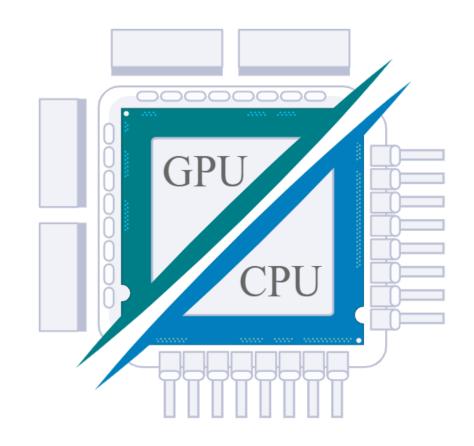
- + High memory bandwidth
- + Relatively low clock frequency
- + Cores > 5k
- + Optimised for parallel computation
- + High performance/watt
- Low memory capacity
- Low per-thread performance

... and two computing worlds to manage

- Copy data from CPU to GPU
- Copy code (kernel) from CPU to GPU
- Launch kernel on GPU
- Copy results from GPU to CPU

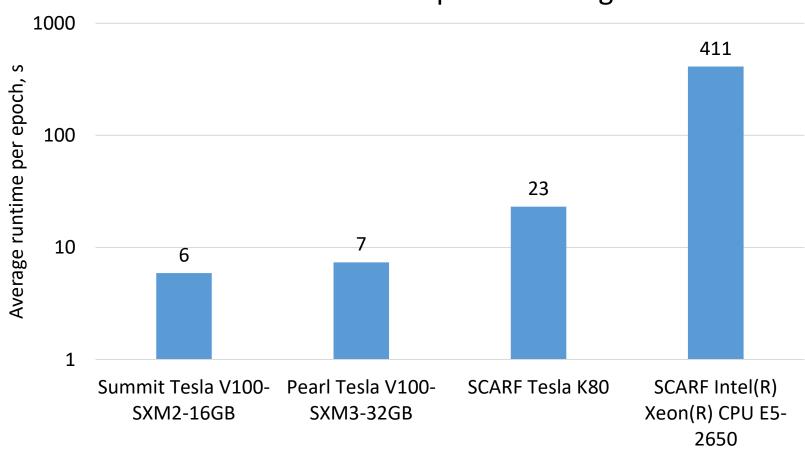
How to accelerate:

- Libraries
- Compiler annotations
- Programming language

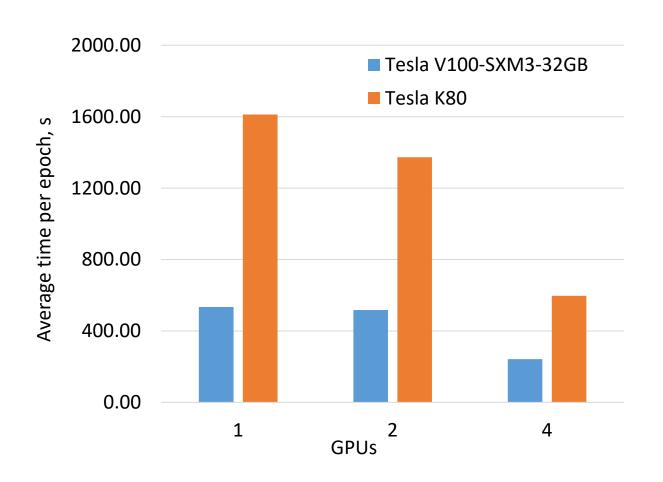


GPU vs CPU: Diffuse Multiple Scattering benchmark (dms_scatter)

Diffuse Multiple Scattering



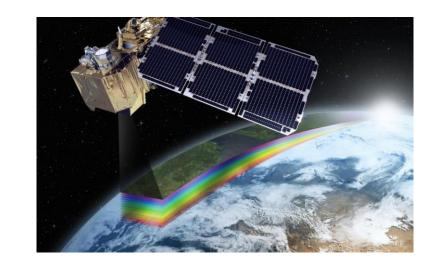
NVIDIA K80 vs V100



	V100 SXM3 32 GB	Tesla K80
Technology	12 nm	28 nm
Chip area	815 mm²	561 mm²
GPU type	GV100	2 x GK210
Peak Single Precision	14 TFLOPS	5.60 TFLOPS
Peak Double Precision	7 TFLOPS	1.87 TFLOPS
Transistors	21,100 million	7,100 million
CUDA cores	5120	2x2496
Tensor cores	640	n/a
SMs	80	2x13
Bus width	4096 bit	2x384 bit
Memory BDW	1134 GBytes/sec	480 Gbytes/sec
GPU frequency	1290-1530 MHz	562-824 MHz
Max power draw	300 W	300 W
Price:	~\$10k	~\$0.5k

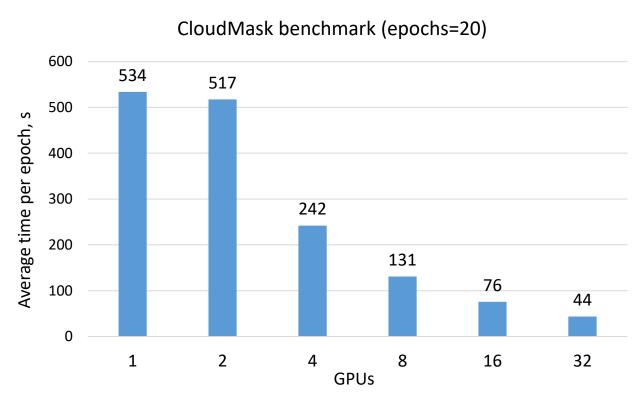
CloudMask benchmark: slstr_cloud

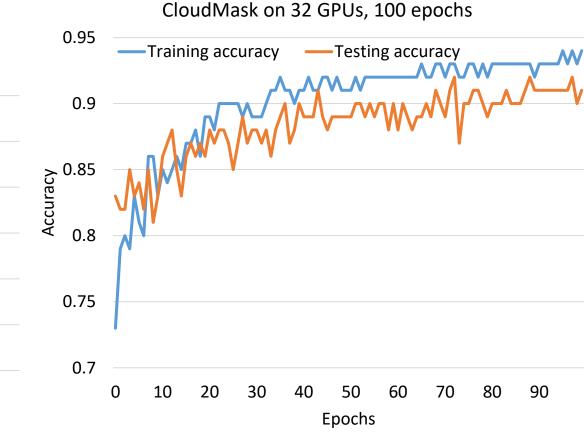
- Estimation of sea surface temperature
- Sentinel-3 satellite: Sea and Land Surface
- Temperature Radiometer (SLSTR) instrument
- Determine whether the individual pixels of satellite images contain cloud or a clear sky
- Traditional solution: thresholding or Bayesian methods
- U-Net deep neural network
- Two datasets of DS1-Cloud (180GB) and DS2-Cloud (2.3+2.6TB)
- Reflectance (6 channels, 2400 x 3000 pixels)
- Brightness temperature (3 channels, 1200 x 1500 pixels)



SLSTR = Sea and Land Surface Temperature Radiometer

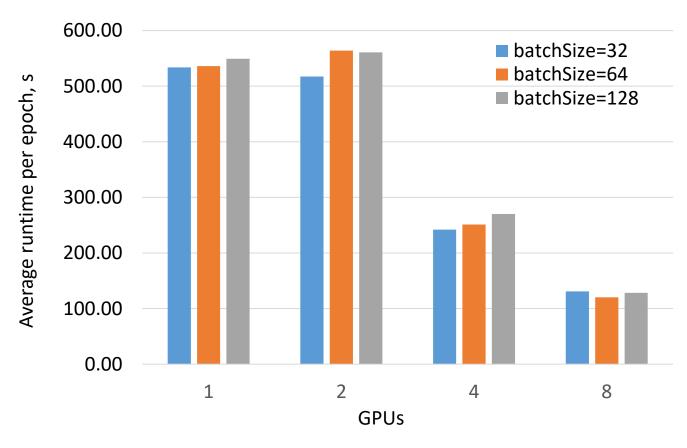
Scalability and accuracy on PEARL (DGX-2)



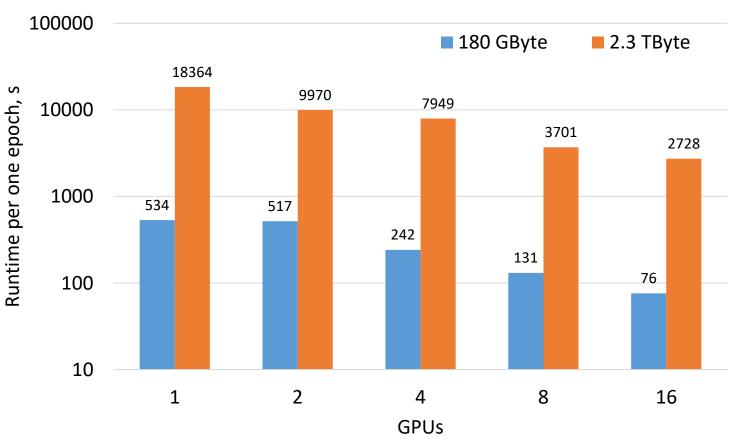


180 GB Dataset

Batch size vs runtime



Big data: GB's to TB's



A month of images for: days: 13542 files, 2.3TB nights: 15506 files, 2.6TB

Image size: 172MByte

Summit @ ORNL

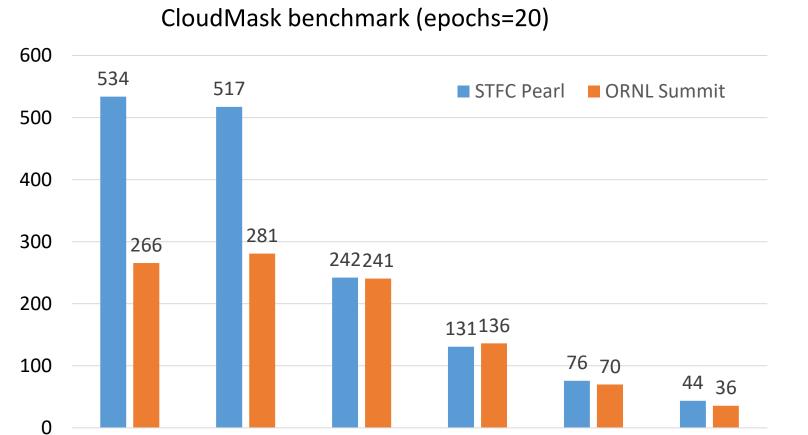
Feature	Summit
Peak FLOPS	200 PF
Max possible Power	13 MW
Number of Nodes	4,608
Node performance	42 TF
Memory per Node	512 GB DDR4 + 96 GB HBM2
NV memory per Node	1.6 TB
Total System Memory	2.8 PB + 7.4 PB NVM
System Interconnect	Dual Port EDR-IB (25 GB/s)
Interconnect Topology	Non-blocking Fat Tree
Bi-Section Bandwidth	115.2 TB/s
Processors on node	2 IBM POWER9™ 6 NVIDIA Volta™
File System	250 PB, 2.5 TB/s, GPFS™

Some practical issues – Juri Papay at RAL

- RSA fob identity check
- No root access
- Singularity container from PEARL does not run (x86 vs ppc64le)
- No IBM Power 9 machines at RAL
- Needed to build container for ppc64le architecture
- Limited disk quota ~52GB, (CloudMask ~200GB 2.6TB)
- Data transfer nodes ~ 10-20MB/sec
- Max time quota 2 hours

PEARL vs Summit

Average time per epoch, s



GPUs

Future work

- Additional benchmarks in the pipeline:
 - ODeep-Halo, LIGO, Optical damage, PhotoZ, ...
- MLCommons Science Working Group
 - OUNO (CANDLE benchmark from ANL)
 - **OSTEM DL** (benchmark from ORNL)
- Additional support for distributed training libraries
- More platforms: ORNL, ANL, NVIDIA A100, Cerebras, Groq, Graphcore, ...
- Code profiling and Inter-GPU communications
- Develop containers for different architectures

"Al won't replace the scientist, but scientists who use Al will replace those who don't."

Adapted from a Microsoft report, "The Future Computed"

With thanks to David Womble (ORNL)